Pressure Drop Prediction of Crude Oil Pipeline Based on PSO-BP Neural Network

被引:6
|
作者
Wei, Lixin [1 ]
Zhang, Yu [1 ]
Ji, Lili [1 ]
Ye, Lin [2 ]
Zhu, Xuanchen [1 ]
Fu, Jin [1 ]
机构
[1] Northeast Petr Univ, Key Lab Enhanced Oil Recovery, Minist Educ, Daqing 163318, Peoples R China
[2] Tianjin Branch CNOOC China Ltd, Bohai Petr Inst, Tianjin 300452, Peoples R China
关键词
neural network; particle swarm algorithm; pressure drop; hot oil pipeline;
D O I
10.3390/en15165880
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Pipeline transportation of crude oil has great advantages over traditional oil transmission methods, in terms of economic and environmental protection. The main costs in the oilfield surface system are the fuel costs for heating the crude oil during transportation and the electricity costs for the pumping units. In the northeast of China, where winter temperatures are extremely low and the oil has a high freezing point and high viscosity, higher temperatures, and pressures are required to transport crude oil. With machine learning widely used in many industries and achieving better results, the digital management of oil pipelines has stored a large amount of production and operation data, which has laid the foundation for the research of oil pipeline process calculation using machine learning methods. In this paper, a crude oil pressure drop calculation of an oil pipeline in Northeast China is carried out based on a neural network. For pipeline pressure drop calculation, the back propagation neural network (BP) pressure drop calculation model and particle swarm optimization for back propagation neuron network (PSO-BP) pressure drop calculation model are established. Two models were used to calculate and compare the measured data, and the average absolute error of the PSO-BP model was the smallest, which was 0.015%. Compared with the BP model, the average relative error is reduced by 13.16%. Therefore, The PSO-BP pressure drop calculation model has high accuracy and is of practical significance for predicting pipeline pressure drop.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Vegetable Price Prediction Based on PSO-BP Neural Network
    Ye Lu
    Li Yuping
    Liang Weihong
    Song Qidao
    Liu Yanqun
    Qin Xiaoli
    [J]. PROCEEDINGS OF 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA 2015), 2015, : 1093 - 1096
  • [2] Network traffic prediction algorithm research based on PSO-BP neural network
    Wei, Cheng
    Peng, Feng
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS RESEARCH AND MECHATRONICS ENGINEERING, 2015, 121 : 1239 - 1243
  • [3] Prediction of plugging formulation based on PSO-BP optimization neural network
    Wang, Xudong
    Chen, Ye
    Huang, Mei
    Zeng, Bo
    Li, Zhengtao
    Su, Junlin
    Zhang, Yuchen
    [J]. ENGINEERING REPORTS, 2024,
  • [4] Mechanical Property Prediction of Strip Model Based on PSO-BP Neural Network
    WANG Ping1
    2. Anhui Key Laboratory of Metal Materials and Processing
    3. Zhangjiagang Pohang Stainless Steel Co Ltd
    [J]. Journal of Iron and Steel Research(International), 2008, (03) : 87 - 91
  • [5] Mechanical Property Prediction of Strip Model Based on PSO-BP Neural Network
    Ping Wang
    Zhen-yi Huang
    Ming-ya Zhang
    Xue-wu Zhao
    [J]. Journal of Iron and Steel Research International, 2008, 15 : 87 - 91
  • [6] Tool life prediction of dicing saw based on PSO-BP neural network
    Jun Shi
    Yanyan Zhang
    Yahui Sun
    Weifeng Cao
    Lintao Zhou
    [J]. The International Journal of Advanced Manufacturing Technology, 2022, 123 : 4399 - 4412
  • [7] Mechanical property prediction of strip model based on PSO-BP neural network
    Wang Ping
    Huang Zhen-yi
    Zhang Ming-ya
    Zhao Xue-wu
    [J]. JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2008, 15 (03) : 87 - 91
  • [8] Mechanical property prediction model of strip based on PSO-BP neural network
    Wang, Xiaolin
    Wang, Pengfeil
    Liu, Hongshen
    Huang, Zhenyi
    [J]. 2007 INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY, PROCEEDINGS, 2007, : 111 - 114
  • [9] Tool life prediction of dicing saw based on PSO-BP neural network
    Shi, Jun
    Zhang, Yanyan
    Sun, Yahui
    Cao, Weifeng
    Zhou, Lintao
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 123 (11-12): : 4399 - 4412
  • [10] Electricity Quantity Prediction Model of Power Battery based on PSO-BP Neural Network
    He, Zhao
    Wen, Junfeng
    Lin, Qionglian
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1428 - 1433