CERES in many-valued logics

被引:0
|
作者
Baaz, M
Leitsch, A
机构
[1] Vienna Univ Technol, Inst Computermath, A-1040 Vienna, Austria
[2] Vienna Univ Technol, Inst Computersprachen, A-1040 Vienna, Austria
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
CERES is a method for cut-elimination in classical logic which is based on resolution. In this paper we extend CERES to CERES-m, a resolution-based method of cut-elimination in Gentzen calculi for arbitrary finitely-valued logics. Like in the classical case the core of the method is the construction of a resolution proof in finitely-valued logics. Compared to Gentzen-type cut-elimination methods the advantage of CERES-m is a twofold one: 1. it is easier to define and 2. it is computationally superior and thus more appropriate for implementations and experiments.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] GENERALIZED MANY-VALUED LOGICS
    MARQUETT.A
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1974, 39 (02) : 419 - 419
  • [2] Paraconsistentization and many-valued logics
    De Souza, Edelcio G.
    Costa-Leite, Alexandre
    Dias, Diogo H. B.
    [J]. LOGIC JOURNAL OF THE IGPL, 2024, 32 (01) : 76 - 93
  • [3] ON INTUITIONISTIC MANY-VALUED LOGICS
    HANAZAWA, M
    TAKANO, M
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1986, 38 (03) : 409 - 419
  • [4] Complexity of many-valued logics
    Hähnle, R
    [J]. BEYOND TWO: THEORY AND APPLICATIONS OF MULTIPLE-VALUED LOGIC, 2003, 114 : 211 - 233
  • [5] Calculi for Many-Valued Logics
    Kaminski, Michael
    Francez, Nissim
    [J]. LOGICA UNIVERSALIS, 2021, 15 (02) : 193 - 226
  • [6] RESOLUTION FOR MANY-VALUED LOGICS
    MORGAN, CG
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1974, 39 (01) : 199 - 200
  • [7] Calculi for Many-Valued Logics
    Michael Kaminski
    Nissim Francez
    [J]. Logica Universalis, 2021, 15 : 193 - 226
  • [8] MANY-VALUED LOGICS AND THEIR ALGEBRAS
    ANSHAKOV, OM
    RYCHKOV, SV
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (06) : 139 - 140
  • [9] MODELS OF MANY-VALUED LOGICS
    FLETCHER, TJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (04): : 381 - &
  • [10] MANY-VALUED COMPUTATIONAL LOGICS
    STACHNIAK, Z
    [J]. JOURNAL OF PHILOSOPHICAL LOGIC, 1989, 18 (03) : 257 - 274