DCPLD-Net: A diffusion coupled convolution neural network for real-time power transmission lines detection from UAV-Borne LiDAR data
被引:18
|
作者:
Chen, Chi
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Wuhan Univ, Engn Res Ctr Spatio Temporal Data Smart Acquisit &, Minist Educ China, Wuhan, Peoples R China
Wuhan Univ, Inst Geospatial intelligence, Wuhan, Peoples R ChinaWuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Chen, Chi
[1
,2
,3
]
Jin, Ang
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Wuhan Univ, Engn Res Ctr Spatio Temporal Data Smart Acquisit &, Minist Educ China, Wuhan, Peoples R China
Wuhan Univ, Inst Geospatial intelligence, Wuhan, Peoples R ChinaWuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Jin, Ang
[1
,2
,3
]
Yang, Bisheng
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Wuhan Univ, Engn Res Ctr Spatio Temporal Data Smart Acquisit &, Minist Educ China, Wuhan, Peoples R China
Wuhan Univ, Inst Geospatial intelligence, Wuhan, Peoples R ChinaWuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Yang, Bisheng
[1
,2
,3
]
Ma, Ruiqi
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Wuhan Univ, Engn Res Ctr Spatio Temporal Data Smart Acquisit &, Minist Educ China, Wuhan, Peoples R China
Wuhan Univ, Inst Geospatial intelligence, Wuhan, Peoples R ChinaWuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Ma, Ruiqi
[1
,2
,3
]
Sun, Shangzhe
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Wuhan Univ, Engn Res Ctr Spatio Temporal Data Smart Acquisit &, Minist Educ China, Wuhan, Peoples R China
Wuhan Univ, Inst Geospatial intelligence, Wuhan, Peoples R ChinaWuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Sun, Shangzhe
[1
,2
,3
]
Wang, Zhiye
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Wuhan Univ, Engn Res Ctr Spatio Temporal Data Smart Acquisit &, Minist Educ China, Wuhan, Peoples R China
Wuhan Univ, Inst Geospatial intelligence, Wuhan, Peoples R ChinaWuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Wang, Zhiye
[1
,2
,3
]
Zong, Zeliang
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Wuhan Univ, Engn Res Ctr Spatio Temporal Data Smart Acquisit &, Minist Educ China, Wuhan, Peoples R China
Wuhan Univ, Inst Geospatial intelligence, Wuhan, Peoples R China
Sence Time, Hangzhou, Peoples R ChinaWuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Zong, Zeliang
[1
,2
,3
,4
]
Zhang, Fei
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Weizhizhuoxin Informat Technol Co Ltd, Shanghai, Peoples R ChinaWuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
Zhang, Fei
[5
]
机构:
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
[2] Wuhan Univ, Engn Res Ctr Spatio Temporal Data Smart Acquisit &, Minist Educ China, Wuhan, Peoples R China
[3] Wuhan Univ, Inst Geospatial intelligence, Wuhan, Peoples R China
[4] Sence Time, Hangzhou, Peoples R China
[5] Shanghai Weizhizhuoxin Informat Technol Co Ltd, Shanghai, Peoples R China
UAV;
Power transmission lines inspection;
Simulated physical processes;
LiDAR;
Point clouds;
POINT;
REGISTRATION;
IMAGES;
D O I:
10.1016/j.jag.2022.102960
中图分类号:
TP7 [遥感技术];
学科分类号:
081102 ;
0816 ;
081602 ;
083002 ;
1404 ;
摘要:
The stable and reliable supply of electric power is strongly related to the normal social production. In recent years, power transmission lines inspection based on remote sensing methods has made great progress, especially using the UAV-borne LiDAR system. The extraction and identification of power transmission lines (i.e., con-ductors) from 3D point clouds are the basis of LiDAR data-based power grid risk management. However, existing rule-based/traditional machine learning extraction approaches have exposed some limitations, such as the lack of timeliness and generalization. Moreover, the potential of deep learning is seriously overlooked in RoW (Right of Way) LiDAR inspection tasks. Thus, we proposed DCPLD-Net: a diffusion coupled convolution neural network for real-time power transmission lines detection from UAV-borne LiDAR data. To implement efficient 2D convolution on 3D point clouds, we proposed a novel point cloud representation, named Cross Section View (CSV), which transforms the discrete point clouds into 3D tensors constructed by voxels with a deformed geo-metric shape along the flight trajectory. After the CSV feature generation, the encoded features of each voxel are treated as energy (i.e., heat) signals and diffused in space to generate diffusion feature maps. The feature of the power line points are thus enhanced through this simulated physical process (diffusion). Finally, a single-stage detector named PLDNet is proposed for the multiscale detection of conductors on the diffused CSV representa-tions. The experimental results show that the DCPLD-Net achieves an average F1 score of 97.14 % at 8 Hz detection frequency on RoWs inspection LiDAR datasets collected by both mini-UAV LiDAR and large-scale fully autonomous UAV power lines inspection robots, and surpasses compared methods (i.e. PointNet ++, RandLA-Net) in terms of F1 scores and IoU.
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Xu, Jianhao
Fan, Xiangtao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Fan, Xiangtao
Jian, Hongdeng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Jian, Hongdeng
Xu, Chen
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Xu, Chen
Bei, Weijia
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Bei, Weijia
Ge, Qifeng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Ge, Qifeng
Zhao, Teng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Zhao, Teng
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,
2024,
62