Monotone Iterative Technique for Impulsive Riemann-Liouville Fractional Differential Equations

被引:10
|
作者
Chaudhary, Renu [1 ]
Pandey, Dwijendra N. [2 ]
机构
[1] GD Goenka Univ, Sch Engn, Dept Basic & Appl Sci, Sohna 122103, Gurugram, India
[2] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
关键词
Monotone iterative technique; Measure of noncompactness; Semigroup theory; Lower and upper solutions; INITIAL-VALUE PROBLEM; EVOLUTION-EQUATIONS; APPROXIMATE CONTROLLABILITY; SYSTEMS;
D O I
10.2298/FIL1809381C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, Monotone iterative technique coupled with the method of lower and upper solutions is employed to discuss the existence and uniqueness of mild solution to an impulsive Riemann-Liouville fractional differential equation. The results are obtained using the concept of measure of noncompactness, semigroup theory and generalized Gronwall inequality for fractional differential equations. At last, an example is given to illustrate the applications of the main results.
引用
收藏
页码:3381 / 3395
页数:15
相关论文
共 50 条
  • [1] MONOTONE ITERATIVE TECHNIQUE FOR FINITE SYSTEMS OF NONLINEAR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS
    Denton, Z.
    Vatsala, A. S.
    [J]. OPUSCULA MATHEMATICA, 2011, 31 (03) : 327 - 339
  • [2] Monotone Iterative Technique for Riemann-Liouville Fractional Integro-Differential Equations with Advanced Arguments
    Liu, Zhenhai
    Sun, Jihua
    Szanto, Ivan
    [J]. RESULTS IN MATHEMATICS, 2013, 63 (3-4) : 1277 - 1287
  • [3] Impulsive fractional differential equations with Riemann-Liouville derivative and iterative learning control
    Chen, Qian
    Debbouche, Amar
    Luo, Zijian
    Wang, JinRong
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 111 - 118
  • [4] Impulsive Multiorders Riemann-Liouville Fractional Differential Equations
    Yukunthorn, Weera
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [5] LIPSCHITZ STABILITY FOR IMPULSIVE RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS
    Bohner, Martin
    Hristova, Snezhana
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (05): : 723 - 745
  • [6] Monotone Iterative Scheme for System of Riemann-Liouville Fractional Differential Equations with Integral Boundary Conditions
    Nanware, J. A.
    Dhaigude, D. B.
    [J]. MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTATION, 2012, 283 : 395 - 402
  • [7] Monotone Iterative Technique for Riemann–Liouville Fractional Integro-Differential Equations with Advanced Arguments
    Zhenhai Liu
    Jihua Sun
    Iván Szántó
    [J]. Results in Mathematics, 2013, 63 : 1277 - 1287
  • [8] Solvability of BVPs for impulsive fractional differential equations involving the Riemann-Liouville fractional derivatives
    Liu, Yuji
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (01): : 79 - 108
  • [9] On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives
    Wang, Xiaoming
    Alam, Mehboob
    Zada, Akbar
    [J]. AIMS MATHEMATICS, 2021, 6 (02): : 1561 - 1595
  • [10] Ulam Stability of Fractional Impulsive Differential Equations with Riemann-Liouville Integral Boundary Conditions
    Abbas, Mohamed I.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2015, 50 (05): : 209 - 219