Bounds of divided universal Bernoulli numbers and universal Kummer congruences

被引:7
|
作者
Adelberg, Arnold [1 ]
Hong, Shaofang
Ren, Wenli
机构
[1] Grinnell Coll, Dept Math, Grinnell, IA 50112 USA
[2] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
[3] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
[4] Dezhou Univ, Dept Math, Dezhou 253023, Peoples R China
关键词
divided universal Bernoulli numbers; universal von Staudt theorem; universal Kummer congruence; p-adic valuation;
D O I
10.1090/S0002-9939-07-09025-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a prime. We obtain good bounds for the p-adic sizes of the coefficients of the divided universal Bernoulli number (B) over cap (n)/n when n is divisible by p - 1. As an application, we give a simple proof of Clarke's 1989 universal von Staudt theorem. We also establish the universal Kummer congruences modulo p for the divided universal Bernoulli numbers for the case (p - 1)vertical bar n, which is a new result.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 50 条