NUMERICAL ANALYSIS OF A GENERAL ELLIPTIC VARIATIONAL-HEMIVARIATIONAL INEQUALITY

被引:4
|
作者
Han, Weimin [1 ]
Sofonea, Mircea [2 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Univ Perpignan Via Domitia, Lab Math & Phys, 52 Ave Paul Alduy, F-66860 Perpignan, France
来源
关键词
Contact problem; Error estimation; Galerkin method; Variational-hemivariational inequal-ity; CONVERGENCE;
D O I
10.23952/jnva.6.2022.5.06
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the numerical analysis of a general elliptic variational-hemivariational inequality. After a review of a solution existence and uniqueness result, we introduce a family of Galerkin methods to solve the problem. We prove the convergence of the numerical method under the minimal solution regularity condition available from the existence result and derive a Ce ' a's inequality for er-ror estimation of the numerical solutions. Then, we apply the results for the numerical analysis of a variational-hemivariational inequality in the study of a static problem which models the contact of an elastic body with a reactive foundation. In particular, under appropriate solution regularity conditions, we derive an optimal order error estimate for the linear finite element solution.
引用
收藏
页码:517 / 534
页数:18
相关论文
共 50 条
  • [1] Numerical analysis of a variational-hemivariational inequality governed by the Stokes equations
    Xiao, Qichang
    Cheng, Xiaoliang
    Liang, Kewei
    Xuan, Hailing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 159 : 1 - 10
  • [2] Numerical analysis of an evolutionary variational-hemivariational inequality with application in contact mechanics
    Barboteu, Mikael
    Bartosz, Krzysztof
    Han, Weimin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 318 : 882 - 897
  • [3] A Revisit of Elliptic Variational-Hemivariational Inequalities
    Han, Weimin
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (04) : 371 - 395
  • [4] Numerical analysis of stationary variational-hemivariational inequalities
    Weimin Han
    Mircea Sofonea
    David Danan
    Numerische Mathematik, 2018, 139 : 563 - 592
  • [5] INFINITELY MANY SOLUTIONS FOR A CLASS OF ELLIPTIC VARIATIONAL-HEMIVARIATIONAL INEQUALITY PROBLEMS
    D'Agu, Giuseppina
    O'Regan, Donal
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (04): : 73 - 82
  • [6] EXISTENCE FOR A QUASISTATIC VARIATIONAL-HEMIVARIATIONAL INEQUALITY
    Peng, Zijia
    Ma, Cuiming
    Liu, Zhonghui
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (04): : 1153 - 1165
  • [7] Numerical analysis of stationary variational-hemivariational inequalities
    Han, Weimin
    Sofonea, Mircea
    Danan, David
    NUMERISCHE MATHEMATIK, 2018, 139 (03) : 563 - 592
  • [8] Numerical analysis of an evolutionary variational-hemivariational inequality with application to a dynamic contact problem
    Han, Danfu
    Han, Weimin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 358 : 163 - 178
  • [9] NONLOCAL ELLIPTIC VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
    Migorski, Stanislaw
    Van Thien Nguyen
    Zeng, Shengda
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2020, 32 (01) : 51 - 58
  • [10] NUMERICAL ANALYSIS OF A HISTORY-DEPENDENT VARIATIONAL-HEMIVARIATIONAL INEQUALITY FOR A VISCOPLASTIC CONTACT PROBLEM
    Cheng, Xiaoliang
    Wang, Xilu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (06) : 820 - 838