A New Fast Nonlinear Principal Component Analysis Algorithm for Blind Source Separation

被引:0
|
作者
Wang, Xin [1 ]
Ou, Shifeng [1 ]
Gao, Ying [1 ]
Guo, Xiaofeng [1 ]
机构
[1] Yantai Univ, Sch Optoelect Informat Sci & Technol, Yantai, Peoples R China
关键词
blind source separation; nonlinear principal component; step size; momentum factor;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The nonlinear principal component analysis (NPCA) can be applied to solve the blind source separation (BSS) problem. By combining the optimum step size with the optimum momentum factor both derived by the decrement of the cost function of NPCA algorithm, an integration fast NPCA algorithm is proposed in this paper. Simulation experiments proved that the proposed algorithm is superior to other NPCA algorithms in convergence rate and steady error.
引用
收藏
页码:1626 / 1630
页数:5
相关论文
共 50 条
  • [1] A New Principal Curve Algorithm for Nonlinear Principal Component Analysis
    Antory, David
    Kruger, Uwe
    Littler, Tim
    [J]. INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 1235 - 1246
  • [2] A NEW ALGORITHM FOR THE UNDERDETERMINED BLIND SOURCE SEPARATION BASED ON SPARSE COMPONENT ANALYSIS
    Liu, Hai-Lin
    Yao, Chu-Jun
    Hou, Jia-Xun
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2009, 23 (01) : 71 - 85
  • [3] A blind source separation method: Nonlinear chirp component analysis
    Peng, Xujun
    Shi, Zhiyu
    Jin, Pengfei
    Zhang, Xiaoyan
    Yang, Zheng
    Feng, Xuelei
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 216
  • [4] Blind source separation and deconvolution: The dynamic component analysis algorithm
    Attias, H
    Schreiner, CE
    [J]. NEURAL COMPUTATION, 1998, 10 (06) : 1373 - 1424
  • [5] A new blind image source separation algorithm based on feedback sparse component analysis
    Yu Xian-chuan
    Xu Jin-dong
    Hu Dan
    Xing Hai-hua
    [J]. SIGNAL PROCESSING, 2013, 93 (01) : 288 - 296
  • [6] FPGA-based realtime blind source separation with principal component analysis
    Wilson, Matthew
    Meyer-Baese, Uwe
    [J]. INDEPENDENT COMPONENT ANALYSES, COMPRESSIVE SAMPLING, LARGE DATA ANALYSES (LDA), NEURAL NETWORKS, BIOSYSTEMS, AND NANOENGINEERING XIII, 2015, 9496
  • [7] Blind source separation using principal component neural networks
    Diamantaras, KI
    [J]. ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 515 - 520
  • [8] A new Kalman filtering algorithm for nonlinear principal component analysis
    Zhu, XL
    Zhang, XD
    Jia, Y
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 1010 - 1015
  • [9] A Genetic Algorithm for Blind Source Separation Based on Independent Component Analysis
    Dadula, Cristina P.
    Dadios, Elmer P.
    [J]. 2014 INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2014,
  • [10] Extraction of FECG Signal Based on Blind Source Separation Using Principal Component Analysis
    Dembrani, Mahesh B.
    Khanchandani, K. B.
    Zurani, Anita
    [J]. PROGRESS IN INTELLIGENT COMPUTING TECHNIQUES: THEORY, PRACTICE, AND APPLICATIONS, VOL 1, 2018, 518 : 173 - 180