Error analysis of the Crank-Nicolson SAV method for the Allen-Cahn equation on variable grids

被引:5
|
作者
Yu, Fan [1 ]
Chen, Minghua [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Allen-Cahn equation; Variable step sizes; Scalar auxiliary variable; Convergence analysis; SCHEMES;
D O I
10.1016/j.aml.2021.107768
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The variable time-stepping technique is powerful in capturing the multi-scale behaviors (e.g., the solution changes rapidly in certain regions of time) for the Allen-Calm equation. Based on the scalar auxiliary variable (SAV) approach and the Crank-Nicolson schemes, we establish the unconditional energy stability and error estimates rigorously for the Allen-Cahn equation on variable grids. A numerical experiment is performed to verify the theoretical results. To the best of our knowledge, this is the first topic on the convergence analysis for the SAV schemes on variable grids. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] NUMERICAL ANALYSIS OF CRANK-NICOLSON SCHEME FOR THE ALLEN-CAHN EQUATION
    Chu, Qianqian
    Jin, Guanghui
    Shen, Jihong
    Jin, Yuanfeng
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (05) : 766 - 776
  • [2] Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation
    Deng, Yangfang
    Weng, Zhifeng
    [J]. AIMS MATHEMATICS, 2021, 6 (04): : 3857 - 3873
  • [3] A Linear Doubly Stabilized Crank-Nicolson Scheme for the Allen-Cahn Equation with a General Mobility
    Hou, Dianming
    Ju, Lili
    Qiao, Zhonghua
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2024, 16 (05) : 1009 - 1038
  • [4] A Linear Doubly Stabilized Crank-Nicolson Scheme for the Allen-Cahn Equation with a General Mobility
    Hou, Dianming
    Ju, Lili
    Qiao, Zhonghua
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2024,
  • [5] CRANK-NICOLSON LEGENDRE SPECTRAL APPROXIMATION FOR SPACE-FRACTIONAL ALLEN-CAHN EQUATION
    Chen, Wenping
    Lu, Shujuan
    Chen, Hu
    Liu, Haiyu
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [6] Numerical Analysis of Fully Discretized Crank-Nicolson Scheme for Fractional-in-Space Allen-Cahn Equations
    Hou, Tianliang
    Tang, Tao
    Yang, Jiang
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (03) : 1214 - 1231
  • [7] Numerical analysis of a stabilized Crank-Nicolson/Adams-Bashforth finite difference scheme for Allen-Cahn equations
    Hou, Tianliang
    Leng, Haitao
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 102
  • [8] Error analysis of a reduced order method for the Allen-Cahn equation
    Guo, Yayu
    Azaiez, Mejdi
    Xu, Chuanju
    [J]. APPLIED NUMERICAL MATHEMATICS, 2024, 203 : 186 - 201
  • [9] 二维Allen-Cahn方程的Crank-Nicolson型差分格式
    张鑫
    金元峰
    乔寒月
    李春花
    [J]. 应用数学学报, 2021, 44 (02) : 238 - 250
  • [10] Numerical approximation of SAV finite difference method for the Allen-Cahn equation
    Chen, Hang
    Huang, Langyang
    Zhuang, Qingqu
    Weng, Zhifeng
    [J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2023, 14 (05)