Vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates: Effects of the Rashba-Dresselhaus coupling and Zeeman splitting

被引:102
|
作者
Sakaguchi, Hidetsugu [1 ]
Sherman, E. Ya. [2 ,3 ]
Malomed, Boris A. [4 ]
机构
[1] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Dept Appl Sci Elect & Mat, Kasuga, Fukuoka 8168580, Japan
[2] Univ Basque Country, UPV EHU, Dept Phys Chem, Bilbao 48940, Spain
[3] Ikerbasque, Basque Fdn Sci, Bilbao, Spain
[4] Tel Aviv Univ, Sch Elect Engn, Dept Phys Elect, Fac Engn, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1103/PhysRevE.94.032202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an analysis of two-dimensional (2D) matter-wave solitons, governed by the pseudospinor system of Gross-Pitaevskii equations with self-and cross attraction, which includes the spin-orbit coupling (SOC) in the general Rashba-Dresselhaus form, and, separately, the Rashba coupling and the Zeeman splitting. Families of semivortex (SV) and mixed-mode (MM) solitons are constructed, which exist and are stable in free space, as the SOC terms prevent the onset of the critical collapse and create the otherwise missing ground states in the form of the solitons. The Dresselhaus SOC produces a destructive effect on the vortex solitons, while the Zeeman term tends to convert the MM states into the SV ones, which eventually suffer delocalization. Existence domains and stability boundaries are identified for the soliton families. For physically relevant parameters of the SOC system, the number of atoms in the 2D solitons is limited by similar to 1.5 x 10(4). The results are obtained by means of combined analytical and numerical methods.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] Topological excitations in rotating Bose-Einstein condensates with Rashba-Dresselhaus spin-orbit coupling in a two-dimensional optical lattice
    Yang, Hui
    Wang, Qingbo
    Su, Ning
    Wen, Linghua
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (12):
  • [2] Topological excitations in rotating Bose-Einstein condensates with Rashba-Dresselhaus spin-orbit coupling in a two-dimensional optical lattice
    Hui Yang
    Qingbo Wang
    Ning Su
    Linghua Wen
    The European Physical Journal Plus, 134
  • [3] Modulation instability of two-dimensional Bose-Einstein condensates with helicoidal and a mixture of Rashba-Dresselhaus spin-orbit couplings
    Tabi, Conrad Bertrand
    Otlaadisa, Phelo
    Kofane, Timoleon Crepin
    PHYSICS LETTERS A, 2022, 449
  • [4] Stable stripe and vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates
    Guo, Yuan
    Idrees, Muhammad
    Lin, Ji
    Li, Hui-jun
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (06)
  • [5] Two-dimensional solitons in dipolar Bose-Einstein condensates with spin-orbit coupling
    Jiang, Xunda
    Fan, Zhiwei
    Chen, Zhaopin
    Pang, Wei
    Li, Yongyao
    Malomed, Boris A.
    PHYSICAL REVIEW A, 2016, 93 (02)
  • [6] Modulational instability in two-dimensional dissipative open Bose-Einstein condensates with mixed helicoidal and Rashba-Dresselhaus spin-orbit couplings
    Tabi, Conrad Bertrand
    Otlaadisa, Phelo
    Kofane, Timoleon Crepin
    PHYSICS LETTERS A, 2023, 481
  • [7] Ground State Phases in Rashba-Dresselhaus Spin-Orbit-Coupled Bose-Einstein Condensates
    Ravisankar, R.
    Sriraman, T.
    Muruganandam, P.
    3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER & APPLIED PHYSICS (ICC-2019), 2020, 2220
  • [8] Effects of linear Zeeman splitting on the dynamics of bright solitons in spin-orbit coupled Bose-Einstein condensates
    Wen Lin
    Liang Yi
    Zhou Jing
    Yu Peng
    Xia Lei
    Niu Lian-Bin
    Zhang Xiao-Fei
    ACTA PHYSICA SINICA, 2019, 68 (08)
  • [9] Two-Dimensional Vortex Solitons in Spin-Orbit-Coupled Dipolar Bose-Einstein Condensates
    Pang, Wei
    Deng, Haiming
    Liu, Bin
    Xu, Jun
    Li, Yongyao
    APPLIED SCIENCES-BASEL, 2018, 8 (10):
  • [10] Stable stripe and vortex solitons in two-dimensional spin-orbit coupled Bose–Einstein condensates
    Yuan Guo
    Muhammad Idrees
    Ji Lin
    Huijun Li
    Communications in Theoretical Physics, 2024, 76 (06) : 28 - 35