Errors in variables models;
Robust inference;
Student t distribution;
ECM algorithm;
BASE-LINE RISK;
REGRESSION;
HETEROGENEITY;
EXPLANATION;
VARIABLES;
D O I:
10.1016/j.jkss.2009.09.003
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this paper we deal with robust inference in heteroscedastic measurement error models Rather than the normal distribution we postulate a Student t distribution for the observed variables Maximum likelihood estimates are computed numerically Consistent estimation of the asymptotic covariance matrices of the maximum likelihood and generalized least squares estimators is also discussed Three test statistics are proposed for testing hypotheses of interest with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels Results of simulations and an application to a real data set are also reported (C) 2009 The Korean Statistical Society Published by Elsevier B V All rights reserved
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Jiangsu, Peoples R China
Seoul Natl Univ, Dept Stat, Seoul, South KoreaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Jiangsu, Peoples R China
Cao, Chunzheng
Chen, Mengqian
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Jiangsu, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Jiangsu, Peoples R China
Chen, Mengqian
Ren, Yuqian
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Jiangsu, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Jiangsu, Peoples R China
Ren, Yuqian
Xu, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Jiangsu, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Jiangsu, Peoples R China