A remark on the divergence of strong power means of Walsh-Fourier series

被引:1
|
作者
Gat, G. [1 ]
Goginava, U. [2 ]
Karagulyan, G. [3 ]
机构
[1] Coll Nyiregyhaza, Inst Math & Comp Sci, Nyiregyhaza, Hungary
[2] Tbilisi State Univ, Dept Math, Fac Exact & Nat Sci, GE-380086 Tbilisi, Georgia
[3] Armenian Natl Acad Sci, Inst Math, Yerevan, Armenia
关键词
Walsh series; strong summability; everywhere divergent Walsh-Fourier series; STRONG APPROXIMATION; STRONG SUMMABILITY; BMO;
D O I
10.1134/S0001434614110261
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
F. Schipp in 1969 proved the almost everywhere p-strong summability of Walsh-Fourier series and showed that if lambda(n)-> a, then there exists a function f a L (1)[0, 1) for which the Walsh partial sums S (k) (x, f) satisfy the divergence condition lim sup(n ->infinity) 1/n (k=1)Sigma(n) vertical bar S-k (x, f)vertical bar lambda((k)) = infinity almost everywhere on [0, 1). In the present paper, we show that this condition holds everywhere.
引用
收藏
页码:897 / 903
页数:7
相关论文
共 50 条