Synthesis of NiS/carbon composites as anodes for high-performance sodium-ion batteries

被引:57
|
作者
Wang, Jinkai [1 ,2 ]
Cao, Daxian [1 ]
Yang, Guidong [3 ]
Yang, Yaodong [2 ]
Wang, Hongkang [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Sch Elect Engn, CNRE, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Dept Chem Engn, Xian 710049, Shaanxi, Peoples R China
基金
美国国家科学基金会;
关键词
Sodium-ion batteries; General synthesis; Thermal decomposition; NiS/C composite; Superior electrochemical properties; REDUCED GRAPHENE OXIDE; IMPROVED ELECTROCHEMICAL PERFORMANCE; LITHIUM SECONDARY BATTERIES; SENSITIZED SOLAR-CELLS; NICKEL SULFIDE; STORAGE PROPERTIES; NIS NANOPARTICLES; COUNTER ELECTRODE; ALPHA-NIS; BETA-NIS;
D O I
10.1007/s10008-017-3600-9
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We demonstrate a general solid-state synthesis of nickel sulfide (NiS) and carbon-based composites (NiS/C) via simple thermal decomposition of nickel dibutyldithiocarbamate (C18H36N2NiS4) under ambient atmosphere, which can be applied to various carbon-based materials such as 2D graphene nanosheets (GNSs), 1D carbon nanotubes (CNTs), and 0D carbon black (CB). When used as anode materials for sodium-ion batteries (SIBs), the as-prepared NiS/C composites demonstrate excellent sodium storage properties including superior cycle stability and rate capability, delivering reversible capacities of 483 (for NiS/GNSs), 394 (for NiS/CNTs), and 413 mAh/g (for NiS/CB) at a current density of 200 mA/g after 100 cycles, respectively, which are much higher than that of the bare NiS counterpart (136 mAh/g at 200 mA/g after 100 cycles). Moreover, reversible capacities of 372 mAh/g for NiS/GNSs, 331 mAh/g for NiS/CNTs, and 317 mAh/g for NiS/CB are realized at a high rate of 2 A/g. The excellent electrochemical performance can be attributed to the introduction of the carbon-based materials, which not only serve as efficient buffering matrixes to tolerate the volume changes of NiS upon sodiation/desodiation but also improve the electrode conductivity. More importantly, this work provides a straightforward and general synthetic approach for designing various NiS/C composites as high-performance anodes for electrochemical energy storage.
引用
收藏
页码:3047 / 3055
页数:9
相关论文
共 50 条
  • [1] Synthesis of NiS/carbon composites as anodes for high-performance sodium-ion batteries
    Jinkai Wang
    Daxian Cao
    Guidong Yang
    Yaodong Yang
    Hongkang Wang
    [J]. Journal of Solid State Electrochemistry, 2017, 21 : 3047 - 3055
  • [2] Hard carbon spheres interconnected by carbon nanotubes as high-performance anodes for sodium-ion batteries
    Suo, Liyao
    Zhu, Jiahao
    Shen, Xueyang
    Wang, Yizhou
    Han, Xiao
    Chen, Zhongqiang
    Li, Yi
    Liu, Yurong
    Wang, Dan
    Ma, Yanwen
    [J]. CARBON, 2019, 151 : 1 - 9
  • [3] Spinifex nanocellulose derived hard carbon anodes for high-performance sodium-ion batteries
    Gaddam, Rohit Ranganathan
    Jiang, Edward
    Amiralian, Nasim
    Annamalai, Pratheep K.
    Martin, Darren J.
    Kumar, Nanjundan Ashok
    Zhao, X. S.
    [J]. SUSTAINABLE ENERGY & FUELS, 2017, 1 (05): : 1090 - 1097
  • [4] Electrolytic bismuth/carbon nanotubes composites for high-performance sodium-ion battery anodes
    Hu, Zuojun
    Li, Xianyang
    Qu, Jiakang
    Zhao, Zhuqing
    Xie, Hongwei
    Yin, Huayi
    [J]. JOURNAL OF POWER SOURCES, 2021, 496
  • [5] Sn nanoparticles@ nitrogen-doped carbon nanofiber composites as high-performance anodes for sodium-ion batteries
    Sha, Mo
    Zhang, Hui
    Nie, Yuting
    Nie, Kaiqi
    Lv, Xiaoxin
    Sun, Na
    Xie, Xinkai
    Ma, Yanyun
    Sun, Xuhui
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (13) : 6277 - 6283
  • [6] Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries
    Zhang, Tao
    Mao, Jing
    Liu, Xiaolin
    Xuan, Minjie
    Bi, Kai
    Zhang, Xiao Li
    Hu, Junhua
    Fan, Jiajie
    Chen, Shimou
    Shao, Guosheng
    [J]. RSC ADVANCES, 2017, 7 (66): : 41504 - 41511
  • [7] Conversion of waste denim fabrics into high-performance carbon fiber anodes for sodium-ion batteries
    Wang, Yichi
    Luo, Hao
    Zhong, Xin
    Zhou, Yinyin
    Jin, Aiping
    Yu, Linghui
    Li, Ming
    Xiong, Jun
    Peng, Junjun
    [J]. Journal of Materials Science, 2024, 59 (43) : 20351 - 20363
  • [8] Molten salt synthesis of carbon anode for high-performance sodium-ion batteries
    Song, Qiushi
    Zhao, Hengpeng
    Zhao, Jie
    Chen, Denghui
    Xu, Qian
    Xie, Hongwei
    Ning, Zhiqiang
    Yu, Kai
    [J]. ELECTROCHIMICA ACTA, 2023, 447
  • [9] NiSe2 nanooctahedra as anodes for high-performance sodium-ion batteries
    Fan, Siwei
    Li, Guangda
    Yang, Gai
    Guo, Xu
    Niu, Xinhuan
    [J]. NEW JOURNAL OF CHEMISTRY, 2019, 43 (32) : 12858 - 12864
  • [10] Synthesis strategies of hard carbon anodes for sodium-ion batteries
    Yin, Jian
    Zhang, Ye Shui
    Liang, Hanfeng
    Zhang, Wenli
    Zhu, Yunpei
    [J]. MATERIALS REPORTS: ENERGY, 2024, 4 (02):