Evaluation of Non-Rigid Registration Parameters for Atlas-based Segmentation of CT Images of Human Cochlea

被引:2
|
作者
Elfarnawany, Mai [1 ]
Alam, S. Riyahi [1 ]
Agrawal, Sumit K. [1 ,2 ,3 ]
Ladak, Hanif M. [1 ,2 ,3 ]
机构
[1] Western Univ, Dept Otolaryngol Head & Neck Surg, London, ON, Canada
[2] Western Univ, Dept Med Biophys, London, ON, Canada
[3] Western Univ, Dept Elect & Comp Engn, London, ON, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
cochlear implant; atlas-based segmentation; non-rigid registration; micro-computed tomography; human cochlea; three-dimensional model; optimization; cost-function;
D O I
10.1117/12.2254040
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Cochlear implant surgery is a hearing restoration procedure for patients with profound hearing loss. In this surgery, an electrode is inserted into the cochlea to stimulate the auditory nerve and restore the patient's hearing. Clinical computed tomography (CT) images are used for planning and evaluation of electrode placement, but their low resolution limits the visualization of internal cochlear structures. Therefore, high resolution micro-CT images are used to develop atlas-based segmentation methods to extract these nonvisible anatomical features in clinical CT images. Accurate registration of the high and low resolution CT images is a prerequisite for reliable atlas-based segmentation. In this study, we evaluate and compare different non-rigid B-spline registration parameters using micro-CT and clinical CT images of five cadaveric human cochleae. The varying registration parameters are cost function (normalized correlation (NC), mutual information and mean square error), interpolation method (linear, windowed-sinc and B-spline) and sampling percentage (1%, 10% and 100%). We compare the registration results visually and quantitatively using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and absolute percentage error in cochlear volume. Using MI or MSE cost functions and linear or windowed-sinc interpolation resulted in visually undesirable deformation of internal cochlear structures. Quantitatively, the transforms using 100% sampling percentage yielded the highest DSC and smallest HD (0.828 +/- 0.021 and 0.25 +/- 0.09mm respectively). Therefore, B-spline registration with cost function: NC, interpolation: B-spline and sampling percentage: moments 100% can be the foundation of developing an optimized atlas-based segmentation algorithm of intracochlear structures in clinical CT images.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Atlas-based segmentation of deep brain structures using non-rigid registration
    Khan, Muhammad Faisal
    Mewes, Klaus
    Gross, Robert E.
    Skrinjar, Oskar
    [J]. MEDICAL IMAGING 2008: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND MODELING, PTS 1 AND 2, 2008, 6918
  • [2] Non-rigid registration of cardiac MR:: Application to motion modelling and atlas-based segmentation
    Rueckert, D
    Lorenzo-Valdés, M
    Chandrashekara, R
    Sanchez-Ortiz, GL
    Mohiaddin, R
    [J]. 2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, 2002, : 481 - 484
  • [3] Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration
    Lorenzo-Valdés, M
    Sanchez-Ortiz, GI
    Mohiaddin, R
    Rueckert, D
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION-MICCAI 2002, PT 1, 2002, 2488 : 642 - 650
  • [4] Quality assessment of non-rigid registration methods for atlas-based segmentation in head-neck radiotherapy
    Parraga, Adriane
    Susin, Altamiro
    Pettersson, Johanna
    Macq, Benoit
    De Craene, Mathieu
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PTS 1-3, PROCEEDINGS, 2007, : 445 - +
  • [5] Large-scale validation of non-rigid registration algorithms for atlas-based brain image segmentation
    Wang, Qian
    D'Agostino, Emiliano
    Seghers, Dieter
    Maes, Frederik
    Vandermeulen, Dirk
    Suetens, Paul
    [J]. MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
  • [6] Atlas-Based Segmentation of Brain Tumor Images Using a Markov Random Field-Based Tumor Growth Model and Non-Rigid Registration
    Bauer, Stefan
    Seiler, Christof
    Bardyn, Thibaut
    Buechler, Philippe
    Reyes, Mauricio
    [J]. 2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 4080 - 4083
  • [7] Hierarchical Atlas-Based Segmentation of the Human Skeleton in CT Images
    Fu, Y.
    Liu, S.
    Li, H.
    Yang, D.
    [J]. MEDICAL PHYSICS, 2017, 44 (06) : 3264 - 3264
  • [8] An Effective Evaluation Method of Non-Rigid Registration of Multiphase Abdominal CT Images
    Li, Ji
    Zhu, Zhi-liang
    Feng, Li-li
    Jiang, Hui-yan
    [J]. COMPUTER SCIENCE FOR ENVIRONMENTAL ENGINEERING AND ECOINFORMATICS, PT 1, 2011, 158 : 334 - 340
  • [9] Evaluation of a Non-Rigid Registration Algorithm for Registration of Serial CT Images of Head and Neck Radiotherapy
    Dogan, N.
    Sleeman, W.
    Song, S.
    Christensen, G.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2011, 81 (02): : S828 - S828
  • [10] Anatomical object recognition and labeling by atlas-based focused non-rigid registration and region-growing
    Gong, Leiguang
    Rohrer, Jonathan
    Iyengar, Giridharan
    Butler, Brian
    Lumsden, Alan
    [J]. 2008 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING, VOLS 1 AND 2, PROCEEDINGS, 2008, : 1354 - 1358