ON COMPUTING ENCLOSING ISOSCELES TRIANGLES AND RELATED PROBLEMS

被引:6
|
作者
Bose, Prosenjit [1 ]
Mora, Merce [2 ]
Seara, Carlos [2 ]
Sethia, Saurabh
机构
[1] Carleton Univ, Sch Comp Sci, Ottawa, ON K1S 5B6, Canada
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 2, ES-08034 Barcelona, Spain
关键词
Enclosing isosceles triangle; perimeter; area; WIDTH; SET;
D O I
10.1142/S0218195911003536
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a set of n points in the plane, we show how to compute various enclosing isosceles triangles where different parameters such as area or perimeter are optimized. We then study a 3-dimensional version of the problem where we enclose a point set with a cone of fixed apex angle alpha.
引用
收藏
页码:25 / 45
页数:21
相关论文
共 50 条
  • [1] Optimal Embedded and Enclosing Isosceles Triangles
    Ambrus, Aron
    Csikos, Monika
    Kiss, Gergely
    Pach, Janos
    Somlai, Gabor
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2023, 34 (07) : 737 - 760
  • [2] COMPUTING THE SMALLEST KAPPA-ENCLOSING CIRCLE AND RELATED PROBLEMS
    EFRAT, A
    SHARIR, M
    ZIV, A
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1994, 4 (03): : 119 - 136
  • [3] ISOSCELES TRIANGLES AND CENTER OF POPULATION
    MILLER, CE
    OPFELL, JB
    [J]. SCIENCE, 1962, 135 (3503) : 604 - &
  • [4] Aesthetic Preference for Isosceles Triangles
    Austin, Thomas R.
    Sleight, Robert B.
    [J]. JOURNAL OF APPLIED PSYCHOLOGY, 1951, 35 (06) : 430 - 431
  • [5] On Polyhedral Realization with Isosceles Triangles
    David Eppstein
    [J]. Graphs and Combinatorics, 2021, 37 : 1247 - 1269
  • [6] Tilings of the sphere with isosceles triangles
    Dawson, RJM
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (03) : 467 - 487
  • [7] On Polyhedral Realization with Isosceles Triangles
    Eppstein, David
    [J]. GRAPHS AND COMBINATORICS, 2021, 37 (04) : 1247 - 1269
  • [8] Tilings of the Sphere with Isosceles Triangles
    Robert J. MacG. Dawson
    [J]. Discrete & Computational Geometry, 2003, 30 : 467 - 487
  • [9] BILLIARDS IN NEARLY ISOSCELES TRIANGLES
    Hooper, W. Patrick
    Schwartz, Richard Evan
    [J]. JOURNAL OF MODERN DYNAMICS, 2009, 3 (02) : 159 - 231
  • [10] SPECIAL NON-ISOSCELES TRIANGLES
    EVANS, R
    ISAACS, IM
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (10): : 825 - 825