Beta-Divergence as a Subclass of Bregman Divergence

被引:18
|
作者
Hennequin, Romain [1 ]
David, Bertrand [1 ]
Badeau, Roland [1 ]
机构
[1] Telecom ParisTech, CNRS LTCI, Inst Telecom, F-75634 Paris 13, France
关键词
Beta-divergence; Bregman divergence; non-negative matrix factorization; NONNEGATIVE MATRIX FACTORIZATION;
D O I
10.1109/LSP.2010.2096211
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a complete proof that the beta-divergence is a particular case of Bregman divergence. This little-known result makes it possible to straightforwardly apply theorems about Bregman divergences to beta-divergences. This is of interest for numerous applications since these divergences are widely used, for instance in non-negative matrix factorization (NMF).
引用
收藏
页码:83 / 86
页数:4
相关论文
共 50 条
  • [1] A Characterization of the Domain of Beta-Divergence and Its Connection to Bregman Variational Model
    Woo, Hyenkyun
    [J]. ENTROPY, 2017, 19 (09):
  • [2] TOWARDS COMPLEX NONNEGATIVE MATRIX FACTORIZATION WITH THE BETA-DIVERGENCE
    Magron, Paul
    Virtanen, Tuomas
    [J]. 2018 16TH INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC), 2018, : 156 - 160
  • [3] MAJORIZATION-MINIMIZATION ALGORITHMS FOR CONVOLUTIVE NMF WITH THE BETA-DIVERGENCE
    Fagot, Dylan
    Wendt, Herwig
    Fevotte, Cedric
    Smaragdis, Paris
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8202 - 8206
  • [4] The Bregman Chord Divergence
    Nielsen, Frank
    Nock, Richard
    [J]. GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 299 - 308
  • [5] Functional Bregman Divergence
    Frigyik, Bela A.
    Srivastava, Santosh
    Gupta, Maya R.
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1681 - +
  • [6] Multi-resolution beta-divergence NMF for blind spectral unmixing
    Leplat, Valentin
    Gillis, Nicolas
    Fevotte, Cedric
    [J]. SIGNAL PROCESSING, 2022, 193
  • [7] Rank-one Tensor Approximation with Beta-divergence Cost Functions
    Vandecappelle, Michiel
    Vervliet, Nico
    De Lathauwer, Lieven
    [J]. 2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [8] α-Divergence Is Unique, Belonging to Both f-Divergence and Bregman Divergence Classes
    Amari, Shun-Ichi
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (11) : 4925 - 4931
  • [9] Blind Audio Source Separation With Minimum-Volume Beta-Divergence NMF
    Leplat, Valentin
    Gillis, Nicolas
    Ang, Andersen M. S.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 3400 - 3410
  • [10] MAXIMIZING THE BREGMAN DIVERGENCE FROM A BREGMAN FAMILY
    Rauh, Johannes
    Matus, Frantisek
    [J]. KYBERNETIKA, 2020, 56 (05) : 875 - 885