Design of hierarchical terminal sliding mode control scheme for fractional-order systems

被引:41
|
作者
Aghababa, Mohammad Pourmahmood [1 ]
机构
[1] Urmia Univ Technol, Dept Elect Engn, Orumiyeh, Iran
关键词
MAGNET SYNCHRONOUS MOTOR; CHAOTIC SYSTEMS; SYNCHRONIZATION; DYNAMICS;
D O I
10.1049/iet-smt.2014.0039
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study presents a novel fractional hierarchical terminal sliding mode control (SMC) scheme for finite-time stabilisation of non-autonomous fractional-order dynamical systems. It is assumed that the fractional-order system is disturbed by some model uncertainties and external noises. A novel fractional hierarchical terminal sliding surface is proposed and its finite time convergence to the origin is shown. Based on the fractional Lyapunov stability theorem and SMC theory, a robust sliding mode switching control law is derived to ensure the existence of the sliding motion in finite time. It is mathematically proved that the states of the error can reach the proposed hierarchical terminal sliding surface in finite time. The introduced method is applied for synchronisation of the fractional-order chaotic Arneodo and Genesio systems to show the usefulness of the method. Furthermore, two non-autonomous fractional-order systems, namely Van der Pol equation and gyro system, are successfully stabilised using the proposed strategy to confirm the theoretical results of this study.
引用
收藏
页码:122 / 133
页数:12
相关论文
共 50 条
  • [1] Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems
    Modiri, Arshia
    Mobayen, Saleh
    [J]. ISA TRANSACTIONS, 2020, 105 : 33 - 50
  • [2] Fractional-Order Fast Terminal Sliding Mode Control for a Class of Dynamical Systems
    Zhao, Guoliang
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [3] Fractional-order terminal sliding mode control for a class of underactuated nonlinear systems
    Cuong, Hoang Manh
    Lam, Nguyen Tung
    Dong, Hoang Quoc
    Van Trieu, Pham
    Tuan, Nguyen Huu
    Tuan, Le Anh
    [J]. 2020 IEEE 18TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), VOL 1, 2020, : 703 - 706
  • [4] Fractional-order fast terminal sliding mode control for nanopositioning
    Wang, Geng
    Aphale, Sumeet S.
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 4313 - 4318
  • [5] Fractional-order Terminal Sliding-mode Control of MIMO Systems With Unmatched Uncertainties
    Zhou M.-H.
    Wei K.-M.
    Feng Y.
    Mu C.-X.
    Su H.-Y.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (10): : 2224 - 2236
  • [6] Modeling and fractional-order adaptive nonsingular terminal sliding mode control for fractional-order ferroresonance system
    Wu Chaojun
    Han Yuchao
    Yang Ningning
    Xu Cheng
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 11368 - 11373
  • [7] Comment on "Fractional-order fixed-time nonsingular terminal sliding mode synchronization and control of fractional-order chaotic systems"
    Khanzadeh, Alireza
    Mohammadzaman, Iman
    [J]. NONLINEAR DYNAMICS, 2018, 94 (04) : 3145 - 3153
  • [8] Comment on “Fractional-order fixed-time nonsingular terminal sliding mode synchronization and control of fractional-order chaotic systems”
    Alireza Khanzadeh
    Iman Mohammadzaman
    [J]. Nonlinear Dynamics, 2018, 94 : 3145 - 3153
  • [9] Practical fractional-order nonsingular terminal sliding mode control of spacecraft
    Alipour, Milad
    Malekzadeh, Maryam
    Ariaei, Alireza
    [J]. ISA TRANSACTIONS, 2022, 128 : 162 - 173
  • [10] Study on the Nonsingular Problem of Fractional-Order Terminal Sliding Mode Control
    Li, Kening
    Cao, Jianyong
    Yu, Fan
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013