The energy spectrum of metrics on surfaces

被引:0
|
作者
Slegers, Ivo [1 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Nordrhein Westf, Germany
关键词
LENGTH;
D O I
10.1007/s10711-022-00704-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (N, rho) be a Riemannian manifold, S a surface of genus at least two and let f : S -> N be a continuous map. We consider the energy spectrum of (N, rho) (and f) which assigns to each point [J] is an element of T(S) in the Teichmuller space of S the infimum of the Dirichlet energies of all maps (S, J) -> (N, rho) homotopic to f. We study the relation between the energy spectrum and the simple length spectrum. Our main result is that if N = S, f = id and rho is a metric of non-positive curvature, then the energy spectrum determines the simple length spectrum. Furthermore, we prove that the converse does not hold by exhibiting two metrics on S with equal simple length spectrum but different energy spectrum. As corollaries to our results we obtain that the set of hyperbolic metrics and the set of singular flat metrics induced by quadratic differentials satisfy energy spectrum rigidity, i.e. a metric in these sets is determined, up to isotopy, by its energy spectrum. We prove that analogous statements also hold true for Kleinian surface groups.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] The energy spectrum of metrics on surfaces
    Ivo Slegers
    [J]. Geometriae Dedicata, 2022, 216
  • [2] ON LENGTH SPECTRUM METRICS AND WEAK METRICS ON TEICHMULLER SPACES OF SURFACES WITH BOUNDARY
    Liu, Lixin
    Papadopoulos, Athanase
    Su, Weixu
    Theret, Guillaume
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2010, 35 (01) : 255 - 274
  • [3] PERFORMANCE METRICS FOR ENERGY SPECTRUM ESTIMATION
    Mclean, Christopher
    Pauley, Michael
    Manton, Jonathan H.
    [J]. 2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 308 - 312
  • [4] Conical Metrics on Riemann Surfaces, II: Spherical Metrics
    Mazzeo, Rafe
    Zhu, Xuwen
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (12) : 9044 - 9113
  • [5] CHARACTERIZATION OF SILICON SURFACES BY ELECTRON ENERGY-LOSS SPECTRUM
    WEI, PSP
    [J]. APPLIED PHYSICS LETTERS, 1970, 17 (09) : 398 - &
  • [6] Electronic spectrum and characterization of diabatic potential energy surfaces for thiophenol
    Zhang, Linyao
    Truhlar, Donald G.
    Sun, Shaozeng
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (44) : 28144 - 28154
  • [7] CHARACTERIZATION OF SOLID SURFACES BY ELECTRON ENERGY LOSS SPECTRUM - PHYS
    WEI, PSP
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1970, (SEP): : 56 - &
  • [8] ENERGY-SPECTRUM OF RECOMBINATION CENTERS ON REAL SURFACES OF GERMANIUM
    GRINEV, VI
    KISELEV, VF
    MATVEEV, VA
    [J]. SOVIET PHYSICS SEMICONDUCTORS-USSR, 1980, 14 (07): : 836 - 837
  • [9] INVARIANT METRICS ON RIEMANN SURFACES
    MINDA, CD
    NAKKI, R
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1981, 39 : 25 - 44
  • [10] EXOTIC METRICS ON IMMERSED SURFACES
    WOLF, JA
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (04) : 871 - &