Bounds on regeneration times and convergence rates for Markov chains

被引:70
|
作者
Roberts, GO [1 ]
Tweedie, RL
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
关键词
renewal times; geometric ergodicity; rates of convergence; Markov chain Monte Carlo; shift coupling; computable bounds;
D O I
10.1016/S0304-4149(98)00085-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many applications of Markov chains, and especially in Markov chain Monte Carlo algorithms, the rate of convergence of the chain is of critical importance. Most techniques to establish such rates require bounds on the distribution of the random regeneration time T that can be constructed, via splitting techniques, at times of return to a "small set" C satisfying a minorisation condition P(x, .) greater than or equal to epsilon phi(.), x is an element of C. Typically, however, it is much easier to get bounds on the time tau(C) of return to the small set itself, usually based on a geometric drift function PV less than or equal to lambda V + b1(C), where PV(x) = E-x(V(X-1)). We develop a new relationship between T and tau(C), and this gives a bound on the tail of T, based on epsilon, lambda and b, which is a strict improvement on existing results. When evaluating rates of convergence we see that our bound usually gives considerable numerical improvement on previous expressions. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:211 / 229
页数:19
相关论文
共 50 条
  • [1] Bounds on regeneration times and convergence rates for Markov chains (vol 80, pg 211, 1999)
    Roberts, GO
    Tweedie, RL
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 91 (02) : 337 - 338
  • [2] COMPUTABLE BOUNDS FOR GEOMETRIC CONVERGENCE RATES OF MARKOV CHAINS
    Meyn, Sean P.
    Tweedie, R. L.
    [J]. ANNALS OF APPLIED PROBABILITY, 1994, 4 (04): : 981 - 1011
  • [3] Bounds on regeneration times and limit theorems for subgeometric Markov chains
    Douc, Randal
    Guillin, Arnaud
    Moulines, Eric
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (02): : 239 - 257
  • [4] Convergence times for parallel Markov chains
    Lachaud, Beatrice
    Ycart, Bernard
    [J]. POSITIVE SYSTEMS, PROCEEDINGS, 2006, 341 : 169 - 176
  • [5] Explicit bounds for geometric convergence of Markov chains
    Kolassa, JE
    [J]. JOURNAL OF APPLIED PROBABILITY, 2000, 37 (03) : 642 - 651
  • [6] On improved bounds and conditions for the convergence of Markov chains
    Veretennikov, A. Yu.
    Veretennikova, M. A.
    [J]. IZVESTIYA MATHEMATICS, 2022, 86 (01) : 92 - 125
  • [7] On Convergence Rates for Homogeneous Markov Chains
    A. Yu. Veretennikov
    M. A. Veretennikova
    [J]. Doklady Mathematics, 2020, 101 : 12 - 15
  • [8] On Convergence Rates for Homogeneous Markov Chains
    Veretennikov, A. Yu.
    Veretennikova, M. A.
    [J]. DOKLADY MATHEMATICS, 2020, 101 (01) : 12 - 15
  • [9] Polynomial convergence rates of Markov chains
    Jarner, SF
    Roberts, GO
    [J]. ANNALS OF APPLIED PROBABILITY, 2002, 12 (01): : 224 - 247
  • [10] On Convergence Rate Bounds for a Class of Nonlinear Markov Chains
    Shchegolev, A. A.
    Veretennikov, A. Yu.
    [J]. MARKOV PROCESSES AND RELATED FIELDS, 2023, 29 (05)