General and Local: Averaged k-Dependence Bayesian Classifiers

被引:9
|
作者
Wang, Limin [1 ]
Zhao, Haoyu [2 ]
Sun, Minghui [1 ]
Ning, Yue [1 ]
机构
[1] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China
[2] Jilin Univ, Sch Software, Changchun 130012, Peoples R China
来源
ENTROPY | 2015年 / 17卷 / 06期
基金
美国国家科学基金会;
关键词
k-dependence Bayesian classifier; substitution-elimination resolution; functionaldependency rules of probability; PROBABILISTIC INFERENCE; NAIVE BAYES; NETWORKS;
D O I
10.3390/e17064134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The inference of a general Bayesian network has been shown to be an NP-hard problem, even for approximate solutions. Although k-dependence Bayesian (KDB) classifier can construct at arbitrary points (values of k) along the attribute dependence spectrum, it cannot identify the changes of interdependencies when attributes take different values. Local KDB, which learns in the framework of KDB, is proposed in this study to describe the local dependencies implicated in each test instance. Based on the analysis of functional dependencies, substitution-elimination resolution, a new type of semi-naive Bayesian operation, is proposed to substitute or eliminate generalization to achieve accurate estimation of conditional probability distribution while reducing computational complexity. The final classifier, averaged k-dependence Bayesian (AKDB) classifiers, will average the output of KDB and local KDB. Experimental results on the repository of machine learning databases from the University of California Irvine (UCI) showed that AKDB has significant advantages in zero-one loss and bias relative to naive Bayes (NB), tree augmented naive Bayes (TAN), Averaged one-dependence estimators (AODE), and KDB. Moreover, KDB and local KDB show mutually complementary characteristics with respect to variance.
引用
收藏
页码:4134 / 4154
页数:21
相关论文
共 50 条
  • [1] Bagging k-dependence Bayesian network classifiers
    Wang, Limin
    Qi, Sikai
    Liu, Yang
    Lou, Hua
    Zuo, Xin
    INTELLIGENT DATA ANALYSIS, 2021, 25 (03) : 641 - 667
  • [2] Learning Based K-Dependence Bayesian Classifiers
    Wang, Limin
    Xie, Yuanxiang
    Zhou, Huisi
    Wang, Yiming
    Guo, Jiangshan
    CLOUD COMPUTING AND SECURITY, ICCCS 2016, PT II, 2016, 10040 : 553 - 566
  • [3] K-dependence Bayesian classifiers for strengthening attribute dependencies
    Wang L.-M.
    Jiang H.-M.
    Kongzhi yu Juece/Control and Decision, 2019, 34 (06): : 1234 - 1240
  • [4] Flexible Learning of k-Dependence Bayesian Network Classifiers
    Rubio, Arcadio
    Gamez, Jose A.
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1219 - 1226
  • [5] Scalable Learning of k-dependence Bayesian Classifiers under MapReduce
    Arias, Jacinto
    Gamez, Jose A.
    Puerta, Jose M.
    2015 IEEE TRUSTCOM/BIGDATASE/ISPA, VOL 2, 2015, : 25 - 32
  • [6] Semi-supervised learning for k-dependence Bayesian classifiers
    Wang, LiMin
    Zhang, XinHao
    Li, Kuo
    Zhang, Shuai
    APPLIED INTELLIGENCE, 2022, 52 (04) : 3604 - 3622
  • [7] Semi-supervised learning for k-dependence Bayesian classifiers
    LiMin Wang
    XinHao Zhang
    Kuo Li
    Shuai Zhang
    Applied Intelligence, 2022, 52 : 3604 - 3622
  • [8] Ensemble of unrestricted K-dependence Bayesian classifiers based on Markov blanket
    Wang L.-M.
    Liu Y.
    Sun M.-H.
    Li M.-H.
    Sun, Ming-Hui (smh@jlu.edu.cn), 1851, Editorial Board of Jilin University (48): : 1851 - 1858
  • [9] K-Dependence Bayesian Classifier Ensemble
    Duan, Zhiyi
    Wang, Limin
    ENTROPY, 2017, 19 (12):
  • [10] Scalable Structure Learning of K-Dependence Bayesian Network Classifier
    Ren, Hongjia
    Wang, Xianchang
    IEEE ACCESS, 2020, 8 : 200005 - 200020