Integrable representations for toroidal extended affine Lie algebras

被引:6
|
作者
Chen, Fulin [1 ]
Li, Zhiqiang [1 ]
Tan, Shaobin [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
Extended affine Lie algebra; Toroidal Lie algebra; Loop representation; Integrable representation; MODULES;
D O I
10.1016/j.jalgebra.2018.11.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be any untwisted affine Kac-Moody algebra, mu any fixed complex number, and (g) over tilde(mu) the corresponding toroidal extended affine Lie algebra of nullity two. For any k-tuple lambda = (lambda(1), . . . , lambda(k)) of weights of g, and k-tuple a = (a(1), . . . , a(k)) of distinct non-zero complex numbers, we construct a class of modules (V) over tilde(lambda, a) for the extended affine Lie algebra (g) over tilde(mu). We prove that the ( g) over tilde(mu)-module (V) over tilde(lambda, a) is completely reducible. We also prove that the (g) over tilde(mu)-module (V) over tilde(lambda, a) is integrable when all weights lambda(i) in lambda are dominant. Thus, we obtain a new class of irreducible integrable weight modules for the toroidal extended affine Lie algebra (g) over tilde(mu). (C) 2018 Published by Elsevier Inc.
引用
收藏
页码:228 / 252
页数:25
相关论文
共 50 条