STRONG CONVERGENCE OF MODIFIED ITERATION PROCESSES FOR RELATIVELY ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

被引:10
|
作者
Kim, Tae-Hwa [3 ]
Takahashi, Wataru [1 ,2 ]
机构
[1] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
[2] Tokyo Inst Technol, Dept Math, Tokyo 1528552, Japan
[3] Pukyong Natl Univ, Div Math Sci, Pusan 608737, South Korea
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2010年 / 14卷 / 06期
关键词
Strong convergence; Modified Ishikawa's iteration; Modified Halpern's iteration; Relatively asymptotically nonexpansive mapping; FIXED-POINTS; APPROXIMATION; OPERATORS; THEOREMS; EXAMPLE;
D O I
10.11650/twjm/1500406068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ishikawa and Halpern's iterations are modified to prove the strong convergence problems of such iteration processes for uniformly Lipschitzian mappings which are relatively asymptotically nonexpansive in Banach spaces, which extend the result due to Matsushita and Takahashi [J. Approx. Theory, 134 (2005), 257-266] for relatively nonexpansive mappings, and also some recent results due to Martinez-Yanez and Xu [Nonlinear Anal., 64 (2006), 2400-2411], and Kim and Xu [Nonlinear Anal., 64 (2006), 1140-1152] for nonexpansive mappings and asymptotically nonexpansive mappings, respectively, which are considered in the Hilbert space frameworks.
引用
收藏
页码:2163 / 2180
页数:18
相关论文
共 50 条