High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes

被引:17
|
作者
Lee, Sangkyu [1 ,3 ]
Eom, Wonsik [2 ]
Park, Hun [2 ]
Han, Tae Hee [2 ]
机构
[1] Hanyang Univ, Dept Mat Sci & Engn, Seoul 04763, South Korea
[2] Hanyang Univ, Dept Organ & Nano Engn, Seoul 04763, South Korea
[3] Inst for Basic Sci Korea, Ctr Nanoparticle Res, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
phase transformation; titanium oxide; anatase; rutile; nanofibers; lithium-ion battery; LONG-CYCLE-LIFE; ELECTROCHEMICAL PERFORMANCE; TIO2; NANOPARTICLES; ELECTROSPUN TIO2; CAPACITY; RUTILE; NANOSHEETS; DIOXIDE; STORAGE;
D O I
10.1021/acsami.7b06631
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Control of the crystal structure of electrochemically active materials is an important approach to fabricating high-performance electrodes for lithium-ion batteries (LIBs). Here, we report a methodology for controlling the crystal structure of TiO2 nanofibers by adding aluminum isopropoxide to a common sol-gel precursor solution utilized to create TiO2 nanofibers. The introduction of aluminum cations impedes the phase transformation of electrospun TiO2 nanofibers from the anatase to the rutile phase, which inevitably occurs in the typical annealing process utilized for the formation of TiO2 crystals. As a result, high temperature stable anatase TiO2 nanofibers were created in which the crystal structure was well-maintained even at high annealing temperatures of up to 700 degrees C. Finally, the resulting anatase TiO2 nanofibers were utilized to prepare LIB anodes, and their electrochemical performance was compared to pristine TiO2 nanofibers that contain both anatase and rutile phases. Compared to the electrode prepared with pristine TiO2 nanofibers, the electrode prepared with anatase TiO2 nanofibers exhibited excellent electrochemical performances such as an initial Coulombic efficiency of 83.9%, a capacity retention of 89.5% after 100 cycles, and a rate capability of 48.5% at a current density of 10 C (1 C = 200 mA g(-1)).
引用
收藏
页码:25332 / 25338
页数:7
相关论文
共 50 条
  • [1] High temperature stable lithium-ion polymer battery
    Park, CK
    Kakirde, A
    Ebner, W
    Manivannan, V
    Chai, C
    Ihm, DJ
    Shim, YJ
    [J]. JOURNAL OF POWER SOURCES, 2001, 97-8 : 775 - 778
  • [2] Electrospun manganese oxide nanofibers as anodes for lithium-ion batteries
    Fan, Quan
    Whittingham, M. Stanley
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (03) : A48 - A51
  • [3] Enhanced Wettability of a PTFE Porous Membrane for a High-Temperature Stable Lithium-Ion Battery Separator
    Guo, Hongxia
    Li, Mingye
    Li, Fan
    Zhu, Qizhen
    Zhao, Yao
    Wang, Feng
    Qin, Zhenping
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 2022, 45 (04) : 737 - 744
  • [4] Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes
    Rong, Jiepeng
    Fang, Xin
    Ge, Mingyuan
    Chen, Haitian
    Xu, Jing
    Zhou, Chongwu
    [J]. NANO RESEARCH, 2013, 6 (03) : 182 - 190
  • [5] Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes
    Jiepeng Rong
    Xin Fang
    Mingyuan Ge
    Haitian Chen
    Jing Xu
    Chongwu Zhou
    [J]. Nano Research, 2013, 6 : 182 - 190
  • [6] Carbon Nanofibers Loaded with Carbon Nanotubes and Iron Oxide as Flexible Freestanding Lithium-Ion Battery Anodes
    Joshi, Bhavana
    Samuel, Edmund
    Jo, Hong Seok
    Kim, Yong-Il
    Park, Sera
    Swihart, Mark T.
    Yoon, Woo Young
    Yoon, Sam S.
    [J]. ELECTROCHIMICA ACTA, 2017, 253 : 479 - 488
  • [7] Hierarchical Graphene-Containing Carbon Nanofibers for Lithium-Ion Battery Anodes
    Dufficy, Martin K.
    Khan, Saad A.
    Fedkiw, Peter S.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (02) : 1327 - 1336
  • [8] Structural Lithium-Ion Battery Cathodes and Anodes Based on Branched Aramid Nanofibers
    Flouda, Paraskevi
    Oka, Suyash
    Loufakis, Dimitrios
    Lagoudas, Dimitris C.
    Lutkenhaus, Jodie L.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (29) : 34807 - 34817
  • [9] Hybrid Carbon Nanotube Fabrics with Sacrificial Nanofibers for Flexible High Performance Lithium-Ion Battery Anodes
    Yildiz, Ozkan
    Dirican, Mahmut
    Fang, Xiaomeng
    Fu, Kun
    Jia, Hao
    Stano, Kelly
    Zhang, Xiangwu
    Bradford, Philip D.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (04) : A473 - A479
  • [10] Activated Carbon Nanofibers as High Capacity Anodes for Lithium-Ion Batteries
    Chen, Chunhui
    Agrawal, Richa
    Hao, Yong
    Wang, Chunlei
    [J]. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2013, 2 (10) : M3074 - M3077