Multi-model drought predictions using temporally aggregated climate indicators

被引:13
|
作者
Rashid, Md. Mamunur [1 ,2 ]
Sharma, Ashish [1 ]
Johnson, Fiona [1 ]
机构
[1] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW, Australia
[2] Univ Cent Florida, Dept Civil Environm & Construct Engn, Orlando, FL 32816 USA
基金
澳大利亚研究理事会;
关键词
Standardized precipitation index; Aggregated climate indices; Model combination; Uncertainty; STANDARDIZED PRECIPITATION INDEX; HYDROLOGICAL DROUGHT; RAINFALL VARIABILITY; SEASONAL RAINFALL; TEMPERATURE; COMBINATION; ENSEMBLES; FORECASTS; SYSTEM; MODEL;
D O I
10.1016/j.jhydrol.2019.124419
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Long term skillful prediction of prolonged hydrologic anomalies is essential for proper planning to reduce the societal risk of extreme hydrological anomalies such as drought. Climate indices estimated from sea surface temperature anomalies (SSTA) of the Pacific and Indian Oceans are often used to predict monthly and seasonal rainfall in Australia and many other places around the world. This study investigates the merit of distorting the time aggregation of such indices before casting them in a predictive model. Aggregated climate indices are used to predict sustained drought and wet anomalies characterised here using a drought index (i.e. Standardize Precipitation Index, SPI) as response and the Australia as the study region of interest. The aim is to enhance the strength of relationships of drought index and climate indices (predictors) by tuning the frequency of climate predictors using an aggregation technique. Result shows that aggregated climate indices provide significant improvement in prediction of SPI over raw climate indices across Australia. As strong spatial variations in optimum aggregation window lengths are evident across Australia suggesting multiple candidate predictive models with similar accuracies, a model combination approach is also adopted. Model combination is found useful in reducing structural uncertainty and further improving the prediction efficiency. Given that the improved predictive accuracy for SSTA the current generation of climate models exhibit, the methodology developed in this study has significant implications for skillful prediction and projection of long term droughts.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An analysis of multi-model ensembles for seasonal climate predictions
    Yan, Xiaoqin
    Tang, Youmin
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2013, 139 (674) : 1179 - 1198
  • [2] An assessment of a multi-model ensemble of decadal climate predictions
    Bellucci, A.
    Haarsma, R.
    Gualdi, S.
    Athanasiadis, P. J.
    Caian, M.
    Cassou, C.
    Fernandez, E.
    Germe, A.
    Jungclaus, J.
    Kroeger, J.
    Matei, D.
    Mueller, W.
    Pohlmann, H.
    Salas y Melia, D.
    Sanchez, E.
    Smith, D.
    Terray, L.
    Wyser, K.
    Yang, S.
    [J]. CLIMATE DYNAMICS, 2015, 44 (9-10) : 2787 - 2806
  • [3] An assessment of a multi-model ensemble of decadal climate predictions
    A. Bellucci
    R. Haarsma
    S. Gualdi
    P. J. Athanasiadis
    M. Caian
    C. Cassou
    E. Fernandez
    A. Germe
    J. Jungclaus
    J. Kröger
    D. Matei
    W. Müller
    H. Pohlmann
    D. Salas y Melia
    E. Sanchez
    D. Smith
    L. Terray
    K. Wyser
    S. Yang
    [J]. Climate Dynamics, 2015, 44 : 2787 - 2806
  • [4] Real-time multi-model decadal climate predictions
    Smith, Doug M.
    Scaife, Adam A.
    Boer, George J.
    Caian, Mihaela
    Doblas-Reyes, Francisco J.
    Guemas, Virginie
    Hawkins, Ed
    Hazeleger, Wilco
    Hermanson, Leon
    Ho, Chun Kit
    Ishii, Masayoshi
    Kharin, Viatcheslav
    Kimoto, Masahide
    Kirtman, Ben
    Lean, Judith
    Matei, Daniela
    Merryfield, William J.
    Mueller, Wolfgang A.
    Pohlmann, Holger
    Rosati, Anthony
    Wouters, Bert
    Wyser, Klaus
    [J]. CLIMATE DYNAMICS, 2013, 41 (11-12) : 2875 - 2888
  • [5] Real-time multi-model decadal climate predictions
    Doug M. Smith
    Adam A. Scaife
    George J. Boer
    Mihaela Caian
    Francisco J. Doblas-Reyes
    Virginie Guemas
    Ed Hawkins
    Wilco Hazeleger
    Leon Hermanson
    Chun Kit Ho
    Masayoshi Ishii
    Viatcheslav Kharin
    Masahide Kimoto
    Ben Kirtman
    Judith Lean
    Daniela Matei
    William J. Merryfield
    Wolfgang A. Müller
    Holger Pohlmann
    Anthony Rosati
    Bert Wouters
    Klaus Wyser
    [J]. Climate Dynamics, 2013, 41 : 2875 - 2888
  • [6] Investigating effect of climate change on drought propagation from meteorological to hydrological drought using multi-model ensemble projections
    Jehanzaib, Muhammad
    Sattar, Muhammad Nouman
    Lee, Joo-Heon
    Kim, Tae-Woong
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2020, 34 (01) : 7 - 21
  • [7] Investigating effect of climate change on drought propagation from meteorological to hydrological drought using multi-model ensemble projections
    Muhammad Jehanzaib
    Muhammad Nouman Sattar
    Joo-Heon Lee
    Tae-Woong Kim
    [J]. Stochastic Environmental Research and Risk Assessment, 2020, 34 : 7 - 21
  • [8] Forecast assimilation: a unified framework for the combination of multi-model weather and climate predictions
    Stephenson, DB
    Coelho, CAS
    Doblas-Reyes, FJ
    Balmaseda, M
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2005, 57 (03) : 253 - 264
  • [9] Can a multi-model ensemble improve phenology predictions for climate change studies?
    Yun, Kyungdahm
    Hsiao, Jennifer
    Jung, Myung-Pyo
    Choi, In-Tae
    Glenn, D. Michael
    Shim, Kyo-Moon
    Kim, Soo-Hyung
    [J]. ECOLOGICAL MODELLING, 2017, 362 : 54 - 64
  • [10] Investigating the Effect of Climate Change on Drought Propagation in the Tarim River Basin Using Multi-Model Ensemble Projections
    Ding, Xiaoyun
    Yu, Yang
    Yang, Meilin
    Wang, Qian
    Zhang, Lingyun
    Guo, Zengkun
    Zhang, Jing
    Mailik, Ireneusz
    Malgorzata, Wistuba
    Yu, Ruide
    Bonacci, Ognjen
    [J]. ATMOSPHERE, 2024, 15 (01)