A Deep Learning Ensemble Method to Assist Cytopathologists in Pap Test Image Classification

被引:26
|
作者
Diniz, Debora N. [1 ]
Rezende, Mariana T. [2 ]
Bianchi, Andrea G. C. [1 ]
Carneiro, Claudia M. [2 ]
Luz, Eduardo J. S. [1 ]
Moreira, Gladston J. P. [1 ]
Ushizima, Daniela M. [3 ,4 ,5 ]
de Medeiros, Fatima N. S. [6 ]
Souza, Marcone J. F. [1 ]
机构
[1] Univ Fed Ouro Preto UFOP, Dept Comp, BR-35400000 Ouro Preto, Brazil
[2] Univ Fed Ouro Preto UFOP, Dept Anal Clin, BR-35400000 Ouro Preto, Brazil
[3] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
[5] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA 94143 USA
[6] Univ Fed Ceara UFC, Dept Engn Teleinformat, BR-60455970 Fortaleza, Ceara, Brazil
关键词
deep learning; ensemble of classifiers; cervical cancer; Pap smear; images classification; SMEARS; INTEGRATION; DIAGNOSIS;
D O I
10.3390/jimaging7070111
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In recent years, deep learning methods have outperformed previous state-of-the-art machine learning techniques for several problems, including image classification. Classifying cells in Pap smear images is very challenging, and it is still of paramount importance for cytopathologists. The Pap test is a cervical cancer prevention test that tracks preneoplastic changes in cervical epithelial cells. Carrying out this exam is important in that early detection. It is directly related to a greater chance of curing or reducing the number of deaths caused by the disease. The analysis of Pap smears is exhaustive and repetitive, as it is performed manually by cytopathologists. Therefore, a tool that assists cytopathologists is needed. This work considers 10 deep convolutional neural networks and proposes an ensemble of the three best architectures to classify cervical cancer upon cell nuclei and reduce the professionals' workload. The dataset used in the experiments is available in the Center for Recognition and Inspection of Cells (CRIC) Searchable Image Database. Considering the metrics of precision, recall, F1-score, accuracy, and sensitivity, the proposed ensemble improves previous methods shown in the literature for two- and three-class classification. We also introduce the six-class classification outcome.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Deep Ensemble Learning for Retinal Image Classification
    Ho, Edward
    Wang, Edward
    Youn, Saerom
    Sivajohan, Asaanth
    Lane, Kevin
    Chun, Jin
    Hutnik, Cindy M. L.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2022, 11 (10):
  • [2] Deep Learning Ensemble for Hyperspectral Image Classification
    Chen, Yushi
    Wang, Ying
    Gu, Yanfeng
    He, Xin
    Ghamisi, Pedram
    Jia, Xiuping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (06) : 1882 - 1897
  • [3] A deep ensemble learning method for cherry classification
    Kiyas Kayaalp
    European Food Research and Technology, 2024, 250 : 1513 - 1528
  • [4] A deep ensemble learning method for cherry classification
    Kayaalp, Kiyas
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2024, 250 (05) : 1513 - 1528
  • [5] A Deep Learning Hierarchical Ensemble for Remote Sensing Image Classification
    Hwang, Seung-Yeon
    Kim, Jeong-Joon
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (02): : 2649 - 2663
  • [6] Ensemble of Handcrafted and Deep Learning Model for Histopathological Image Classification
    Majety, Vasumathi Devi
    Sharmili, N.
    Pattanaik, Chinmaya Ranjan
    Lydia, E. Laxmi
    Zeebaree, Subhi R. M.
    Mahmood, Sarmad Nozad
    Abosinnee, Ali S.
    Alkhayyat, Ahmed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 4393 - 4406
  • [7] An improved ensemble deep belief model (EDBM) for pap-smear cell image classification
    Benhari, Mona
    Hossseini, Rahil
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (21) : 60519 - 60536
  • [8] A Classification Method Based on Ensemble Learning of Deep Learning and Multidimensional Scaling
    Miyazawa, Kazuya
    Sato-Ilic, Mika
    INTELLIGENT DECISION TECHNOLOGIES, KES-IDT 2021, 2021, 238 : 379 - 390
  • [9] Deep Learning with Ensemble Classification Method for Sensor Sampling Decisions
    Taleb, Sirine
    Al Sallab, Ahmad
    Hajj, Hazem
    Dawy, Zaher
    Khanna, Rahul
    Keshavamurthy, Anil
    2016 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2016, : 114 - 119
  • [10] Deep learning ensemble method for classification of satellite hyperspectral images
    Iyer, Praveen
    Sriram, A.
    Lal, Shyam
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 23