A REGULARIZED TENSOR NETWORK FOR CYCLONE WIND SPEED ESTIMATION

被引:0
|
作者
Chen, Zhao [1 ]
Yu, Xingxing [1 ]
Zhou, Feng [1 ]
Yang, Bin [1 ]
机构
[1] Donghua Univ, Sch Comp Sci & Technol, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Tensor Network; regression; classification; manifold; regularization; multispectral images; INTENSITY ESTIMATION;
D O I
10.1109/IGARSS39084.2020.9324653
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Maximum wind speed (MWS) is an important characteristic of tropical cyclone (TC). Estimation of MWS with remote sensing images of TCs via machine learning is a relatively new and challenging task. Here we propose a novel and effective method, Regularized Tensor Network (RTN), to estimate MWS using multispectral images (MSIs). RTN is a transductive regression model, built on a deep Tensor Network (TN) combined with two regularizations: manifold learning and categorization error. Experimental results showed that RTN outperformed several classic regression methods as well as advanced models based on deep learning.
引用
收藏
页码:1090 / 1093
页数:4
相关论文
共 50 条
  • [1] A TENSOR NETWORK FOR TROPICAL CYCLONE WIND SPEED ESTIMATION
    Yu, Xingxing
    Chen, Zhao
    Chen, Guangchen
    Zhang, He
    Zhou, Junfeng
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 10007 - 10010
  • [2] A Novel Tensor Network for Tropical Cyclone Intensity Estimation
    Chen, Zhao
    Yu, Xingxing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (04): : 3226 - 3243
  • [3] Estimation of global tropical cyclone wind speed probabilities using the STORM dataset
    Bloemendaal, Nadia
    de Moel, Hans
    Muis, Sanne
    Haigh, Ivan D.
    Aerts, Jeroen C. J. H.
    SCIENTIFIC DATA, 2020, 7 (01)
  • [4] Estimation of global tropical cyclone wind speed probabilities using the STORM dataset
    Nadia Bloemendaal
    Hans de Moel
    Sanne Muis
    Ivan D. Haigh
    Jeroen C. J. H. Aerts
    Scientific Data, 7
  • [5] NARX-Network Based Wind Speed Estimation for Wind Turbines
    Huo, Feng
    Zhang, Xue-song
    Ji, Guo-rui
    Liu, Zhong-peng
    Dai, Hai-tao
    Feng, Jian
    2016 INTERNATIONAL CONFERENCE ON POWER, ENERGY ENGINEERING AND MANAGEMENT (PEEM 2016), 2016, : 192 - 196
  • [6] A SAR-Based Parametric Model for Tropical Cyclone Tangential Wind Speed Estimation
    Wang, Sheng
    Yang, Xiaofeng
    Portabella, Marcos
    Yuen, Ka-Veng
    Zhang, Miao
    Du, Yanlei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8806 - 8818
  • [7] A SAR-Based Parametric Model for Tropical Cyclone Tangential Wind Speed Estimation
    Wang, Sheng
    Yang, Xiaofeng
    Portabella, Marcos
    Yuen, Ka-Veng
    Zhang, Miao
    Du, Yanlei
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15 : 8806 - 8818
  • [8] Improved tropical cyclone wind speed estimation for microwave altimeter using machine learning
    Sharoni, Syarawi M. H.
    Reba, Mohd Nadzri Md
    San Lim, Hwee
    REMOTE SENSING OF ENVIRONMENT, 2024, 301
  • [9] Artificial neural network based methodologies for the estimation of wind speed
    Deligiorgi, D. (despo@phys.uoa.gr), 1600, Springer Verlag (129):
  • [10] Tropical Cyclone Wind Speed Estimation From Satellite Altimeter-Derived Ocean Parameters
    Sharoni, Syarawi M. H.
    Reba, Mohd Nadzri Md
    Hossain, Mohammad Shawkat
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2021, 126 (04)