Convection-diffusion in unsteady non-Newtonian fluid flow in an annulus with wall absorption

被引:2
|
作者
Sebastian, Binil Thomas [1 ]
Nagarani, P. [2 ]
机构
[1] Univ Technol, Sch Math & Stat, Kingston, Jamaica
[2] Univ West Indies, Dept Math, Mona Campus, Kingston 7, Jamaica
关键词
dispersion theory; convection-diffusion; generalized dispersion method; Casson fluid; oscillatory flow; OSCILLATORY FLOW; DISPERSION; TRANSPORT; SOLUTE;
D O I
10.1007/s13367-018-0025-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The present study investigates the combined effects of non-Newtonian rheology and unsteady nature of the fluid on dispersion of a soluble substance between two coaxial cylinders having wall permeability at the outer wall with the flowing fluid is modelled as Casson fluid. Generalized dispersion method in combination with a finite difference scheme is used to study the dispersion phenomenon. Using the generalized dispersion model, the entire process of dispersion is expressed in terms of three transport coefficients viz., absorption, convection, and dispersion (effective diffusion) coefficients. These transport coefficients are evaluated numerically using Crank-Nicolson finite difference method. The mean concentration is expressed in terms of these transport coefficients. Effects of annular gap, yield stress, Womersley frequency parameter, amplitude of the pressure pulsation, and the absorption parameter on the transport coefficients and mean concentration are studied. Flow unsteadiness is observed influencing the dispersion coefficient both quantitatively and qualitatively. It is observed that, as Womersley number increases the fluctuation of the dispersion coefficient increases and the magnitude of dispersion coefficient decreases for small values of time (< 0.5) and increases for later values of time.
引用
收藏
页码:261 / 271
页数:11
相关论文
共 50 条