Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester

被引:324
|
作者
Karan, Sumanta Kumar [1 ]
Mandal, Dipankar [2 ]
Khatua, Bhanu Bhusan [1 ]
机构
[1] Indian Inst Technol, Ctr Mat Sci, Kharagpur 721302, W Bengal, India
[2] Jadavpur Univ, Dept Phys, Organ Nanopiezoelect Device Lab, Kolkata 700032, India
关键词
POLY(VINYLIDENE FLUORIDE); GRAPHENE; PHASE; COMPOSITE; NANOGENERATOR; REDUCTION; POLYMORPH; OXIDE;
D O I
10.1039/c5nr02067k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we report the superior piezoelectric energy harvester ability of a non-electrically poled Fe-doped reduced graphene oxide (Fe-RGO)/poly(vinylidene fluoride) (PVDF) nanocomposite film prepared through a simple solution casting technique that favors the nucleation and stabilization of approximate to 99% relative proportion of polar gamma-phase. The piezoelectric energy harvester was made with non-electrically poled Fe-RGO/PVDF nanocomposite film that gives an open circuit output voltage and short circuit current up to 5.1 V and 0.254 mu A by repetitive human finger imparting. The improvement of the output performance is influenced by the generation of the electroactive polar gamma-phase in the PVDF, due to the electrostatic interactions among the -CH2-/-CF2-dipoles of PVDF and the delocalized pi-electrons and remaining oxygen functionalities of Fe-doped RGO via ion-dipole and/or hydrogen bonding interactions. Fourier transform infrared spectroscopy (FT-IR) confirmed the nucleation of the polar gamma-phase of PVDF by electrostatic interactions and Raman spectroscopy also supported the molecular interactions between the dipoles of PVDF and the Fe-doped RGO nanosheets. In addition, the nanocomposite shows a higher electrical energy density of approximate to 0.84 J cm(-3) at an electric field of 537 kV cm(-1), which indicates that it is appropriate for energy storage capabilities. Moreover, the surface of the prepared nanocomposite film is electrically conducting and shows an electrical conductivity of approximate to 3.30 x 10(-3) S cm(-1) at 2 wt% loading of Fe-RGO.
引用
收藏
页码:10655 / 10666
页数:12
相关论文
共 50 条
  • [1] Self-Powered Piezoelectric Energy Harvester for Bicycle
    Vasic, Dejan
    Chen, Yu-Yin
    Costa, Francois
    Vasic, Dejan
    39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), 2013, : 1856 - 1861
  • [2] Self-powered piezoelectric energy harvester for bicycle
    Dejan Vasic
    Yu-Yin Chen
    François Costa
    Journal of Mechanical Science and Technology, 2014, 28 : 2501 - 2510
  • [3] Self-powered piezoelectric energy harvester for bicycle
    Vasic, Dejan
    Chen, Yu-Yin
    Costa, Francois
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2014, 28 (07) : 2501 - 2510
  • [4] Self-powered communicating wireless sensor with flexible aero-piezoelectric energy harvester
    Le Scornec, Julien
    Guiffard, Benoit
    Seveno, Raynald
    Le Cam, Vincent
    Ginestar, Stephane
    RENEWABLE ENERGY, 2022, 184 : 551 - 563
  • [5] Self-powered cardiac pacemaker: the viability of a piezoelectric energy harvester
    Gururaj, Sanjana
    Applequist, Alexis
    Bhattarai, Sujata
    Appaji, Abhishek M.
    Kadambi, Pooja
    2020 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2020,
  • [6] Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor
    Kim, Min-Ook
    Pyo, Soonjae
    Oh, Yongkeun
    Kang, Yunsung
    Cho, Kyung-Ho
    Choi, Jungwook
    Kim, Jongbaeg
    SMART MATERIALS AND STRUCTURES, 2018, 27 (03)
  • [7] EXPERIMENTAL INVESTIGATION ON THE PIEZOELECTRIC ENERGY HARVESTER AS A SELF-POWERED VIBRATION SENSOR
    Grzybek, Dariusz
    Micek, Piotr
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2018, 56 (03) : 687 - 699
  • [8] Flexible and Self-Powered PVDF-Nanosilica Based Piezoelectric Touch Sensor
    Hari M.A.
    Divya R.S.
    Rakesh K.
    Karumuthil S.C.
    Varghese S.
    Rajan L.
    SN Computer Science, 4 (1)
  • [9] Development of a pavement block piezoelectric energy harvester for self-powered walkway applications
    Song, Gyeong Ju
    Cho, Jae Yong
    Kim, Kyung-Bum
    Ahn, Jung Hwan
    Song, Yewon
    Hwang, Wonseop
    Hong, Seong Do
    Sung, Tae Hyun
    APPLIED ENERGY, 2019, 256
  • [10] Nanofibers-Based Piezoelectric Energy Harvester for Self-Powered Wearable Technologies
    Mokhtari, Fatemeh
    Shamshirsaz, Mahnaz
    Latifi, Masoud
    Foroughi, Javad
    POLYMERS, 2020, 12 (11) : 1 - 15