Structural and Morphological Quantitative 3D Characterisation of Ammonium Nitrate Prills by X-Ray Computed Tomography

被引:7
|
作者
Leonard, Fabien [1 ]
Zhang, Zhen [1 ]
Krebs, Holger [1 ]
Bruno, Giovanni [1 ,2 ]
机构
[1] Bundesanstalt Mat Forsch & Prufung, Unter Eichen 87, D-12205 Berlin, Germany
[2] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
关键词
ANFO; explosives; specific surface area; porosity; XCT; data processing; PARTICULATE FILTER MATERIALS; EVALUATING POROSITY; QUANTIFICATION; BONE;
D O I
10.3390/ma13051230
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually referred to as ANFO, is extensively used in the mining industry as a bulk explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the complex pore structure of the AN prills. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. Importantly, oil retention measurements (qualifying the efficiency of ANFO as explosives) correlate well with the specific surface area determined by XCT. XCT can therefore be employed non-destructively; it can accurately evaluate and characterise porosity in ammonium nitrate prills, and even predict their efficiency.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] 3D characterization of walnut morphological traits using X-ray computed tomography
    Bernard, Anthony
    Hamdy, Sherif
    Le Corre, Laurence
    Dirlewanger, Elisabeth
    Lheureux, Fabrice
    PLANT METHODS, 2020, 16 (01)
  • [2] 3D characterization of walnut morphological traits using X-ray computed tomography
    Anthony Bernard
    Sherif Hamdy
    Laurence Le Corre
    Elisabeth Dirlewanger
    Fabrice Lheureux
    Plant Methods, 16
  • [3] 3D Quantitative Mineral Characterization of Particles Using X-ray Computed Tomography
    Godinho, Jose Ricardo Assuncao
    Hassanzadeh, Ahmad
    Heinig, Thomas
    NATURAL RESOURCES RESEARCH, 2023, 32 (02) : 479 - 499
  • [4] 3D Quantitative Mineral Characterization of Particles Using X-ray Computed Tomography
    Jose Ricardo Assunção Godinho
    Ahmad Hassanzadeh
    Thomas Heinig
    Natural Resources Research, 2023, 32 : 479 - 499
  • [5] X-ray microfocus computed tomography: a powerful tool for structural and functional characterisation of 3D printed dosage forms
    Gioumouxouzis, C. I.
    Katsamenis, O. L.
    Fatouros, D. G.
    JOURNAL OF MICROSCOPY, 2020, 277 (03) : 135 - 139
  • [6] X-ray computed tomography for 3D plant imaging
    Piovesan, Agnese
    Vancauwenberghe, Valerie
    Van de Looverbosch, Tim
    Verboven, Pieter
    Nicolai, Bart
    TRENDS IN PLANT SCIENCE, 2021, 26 (11) : 1171 - 1185
  • [7] Aggregate Morphological Characterization with 3D Optical Scanner versus X-Ray Computed Tomography
    Liu, Yu
    Gong, Fangyuan
    You, Zhanping
    Wang, Hainian
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2018, 30 (01)
  • [8] X-ray 3D computed tomography of bronze archaeological samples
    Rossi, M.
    Casali, F.
    Chirco, P.
    Morigi, M.P.
    Nava, E.
    Querzola, E.
    Zanarini, M.
    IEEE Nuclear Science Symposium and Medical Imaging Conference, 1999, 1 : 368 - 374
  • [9] X-ray 3D computed tomography of bronze archaeological samples
    Rossi, M
    Casali, F
    Chirco, P
    Morigi, MP
    Nava, E
    Querzola, E
    Zanarini, M
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1999, 46 (04) : 897 - 903
  • [10] X-ray 3D computed tomography of bronze archaeological samples
    Rossi, M.
    Casali, F.
    Chirco, P.
    Morigi, M.P.
    Nava, E.
    Querzola, E.
    Zanarini, M.
    IEEE Transactions on Nuclear Science, 1999, 46 (4 I): : 897 - 903