A discrete analog of Gumbel distribution: properties, parameter estimation and applications

被引:10
|
作者
Chakraborty, Subrata [1 ]
Chakravarty, Dhrubajyoti [2 ]
Mazucheli, Josmar [3 ]
Bertoli, Wesley [4 ]
机构
[1] Dibrugarh Univ, Dept Stat, Dibrugarh, Assam, India
[2] PDUAM, Dept Stat, Behali, India
[3] State Univ, Dept Stat, Maringa, Parana, Brazil
[4] Fed Univ Technol, Dept Stat, Apucarana, Parana, Brazil
关键词
Gumbel distribution; homogeneous skewness; long tail; log-concavity; simulation study; Skellam distribution; PROBABILITY;
D O I
10.1080/02664763.2020.1744538
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A discrete version of the Gumbel distribution (Type-I Extreme Value distribution) has been derived by using the general approach of discretization of a continuous distribution. Important distributional and reliability properties have been explored. It has been shown that depending on the choice of parameters the proposed distribution can be positively or negatively skewed; possess long-tail(s). Log-concavity of the distribution and consequent results have been established. Estimation of parameters by method of maximum likelihood, method of moments, and method of proportions has been discussed. A method of checking model adequacy and regression type estimation based on empirical survival function has also been examined. A simulation study has been carried out to compare and check the efficacy of the three methods of estimations. The distribution has been applied to model three real count data sets from diverse application area namely, survival times in number of days, maximum annual floods data from Brazil and goal differences in English premier league, and the results show the relevance of the proposed distribution.
引用
收藏
页码:712 / 737
页数:26
相关论文
共 50 条
  • [1] A generalized Gumbel distribution and its parameter estimation
    Demirhan, Haydar
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (10) : 2829 - 2848
  • [2] A new two-parameter exponentiated discrete Lindley distribution: properties, estimation and applications
    El-Morshedy, M.
    Eliwa, M. S.
    Nagy, H.
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (02) : 354 - 375
  • [3] Gumbel-Weibull Distribution: Properties and Applications
    Al-Aqtash, Raid
    Lee, Carl
    Famoye, Felix
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2014, 13 (02) : 201 - 225
  • [4] The Gumbel-Lomax Distribution: Properties and Applications
    Tahir, M. H.
    Hussain, M. Adnan
    Cordeiro, Gauss M.
    Hamedani, G. G.
    Mansoor, M.
    Zubair, M.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2016, 15 (01): : 61 - 79
  • [5] Gumbel-geometric Distribution: Properties and Applications
    Oseni, Bamidele Mustapha
    Okasha, Hassan M.
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2020, 33 (04): : 925 - 941
  • [6] The Gumbel-Lomax Distribution: Properties and Applications
    M. H. Tahir
    M. Adnan Hussain
    Gauss M. Cordeiro
    G. G. Hamedani
    M. Mansoor
    M. Zubair
    Journal of Statistical Theory and Applications, 2016, 15 (1): : 61 - 79
  • [7] Monte Carlo Comparison of the Parameter Estimation Methods for the Two-Parameter Gumbel Distribution
    Aydin, Demet
    Senoglu, Birdal
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2015, 14 (02) : 123 - 140
  • [8] Parameter Estimation for Discrete Laplace Distribution
    Nour Al Hayek
    Lobachevskii Journal of Mathematics, 2021, 42 : 368 - 373
  • [9] Parameter Estimation for Discrete Laplace Distribution
    Al Hayek, Nour
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (02) : 368 - 373
  • [10] THE EXPONENTIATED GUMBEL-LOMAX DISTRIBUTION: PROPERTIES AND APPLICATIONS
    Uwadi, Uchenna Ugwunnaya
    Nwezza, Elebe Emmanuel
    Omekara, Chukwuemeka Onwuzuruike
    STATISTICA, 2022, 82 (04) : 433 - 459