Magnon-photon strong coupling for tunable microwave circulators

被引:48
|
作者
Zhu, Na [1 ]
Han, Xu [1 ]
Zou, Chang-Ling [1 ,2 ]
Xu, Mingrui [1 ]
Tang, Hong X. [1 ]
机构
[1] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
[2] Univ Sci & Technol China, Dept Opt, Hefei 230026, Peoples R China
基金
美国国家科学基金会;
关键词
OPERATION; FILM;
D O I
10.1103/PhysRevA.101.043842
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a generic theoretical framework to describe nonreciprocal microwave circulation in a multimode cavity magnonic system and assess the optimal performance of practical circulator devices. We show that high isolation (> 56 dB), extremely low insertion loss (< 0.05 dB), and flexible bandwidth control can be potentially realized in high-quality-factor superconducting cavity based magnonic platforms. These circulation characteristics are analyzed with materials of different spin densities. For high-spin-density materials such as yttrium iron garnet, the strong-coupling operation regime can be harnessed to obtain a broader circulation bandwidth. We also provide practical design principles for a highly integratable low-spin-density material (vanadium tetracyanoethylene) for narrow-band circulator operation, which could benefit noise-sensitive quantum microwave measurements. This theory can be extended to other coupled systems and provide design guidelines for achieving tunable microwave nonreciprocity for both classical and quantum applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Strong magnon-photon coupling within a tunable cryogenic microwave cavity
    Potts, C. A.
    Davis, J. P.
    [J]. APPLIED PHYSICS LETTERS, 2020, 116 (26)
  • [2] Tunable magnon-photon coupling in a compensating ferrimagnet-from weak to strong coupling
    Maier-Flaig, H.
    Harder, M.
    Klingler, S.
    Qiu, Z.
    Saitoh, E.
    Weiler, M.
    Gepraegs, S.
    Gross, R.
    Goennenwein, S. T. B.
    Huebl, H.
    [J]. APPLIED PHYSICS LETTERS, 2017, 110 (13)
  • [3] Magnon-photon coupling in antiferromagnets
    Yuan, H. Y.
    Wang, X. R.
    [J]. APPLIED PHYSICS LETTERS, 2017, 110 (08)
  • [4] Control of the Magnon-Photon Coupling
    Bai, Lihui
    Blanchette, K.
    Harder, M.
    Chen, Y. P.
    Fan, X.
    Xiao, J. Q.
    Hu, C. -M.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (07)
  • [5] MAGNON-PHOTON COUPLING IN ANTIFERROMAGNETS
    MANOHAR, C
    VENKATARAMAN, G
    [J]. PHYSICAL REVIEW B-SOLID STATE, 1972, 5 (05): : 1993 - +
  • [6] Direct probing of strong magnon-photon coupling in a planar geometry
    Kaffash, Mojtaba T.
    Wagle, Dinesh
    Rai, Anish
    Meyer, Thomas
    Xiao, John Q.
    Jungfleisch, M. Benjamin
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (01)
  • [7] Control of magnon-photon coupling by spin torque
    Rai, Anish
    Jungfleisch, M. Benjamin
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 571
  • [8] Controlling magnon-photon coupling in a planar geometry
    Wagle, Dinesh
    Rai, Anish
    Kaffash, Mojtaba T.
    Jungfleisch, M. Benjamin
    [J]. JOURNAL OF PHYSICS-MATERIALS, 2024, 7 (02):
  • [9] Level Attraction Due to Dissipative Magnon-Photon Coupling
    Harder, M.
    Yang, Y.
    Yao, B. M.
    Yu, C. H.
    Rao, J. W.
    Gui, Y. S.
    Stamps, R. L.
    Hu, C. -M.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (13)
  • [10] Ultra-strong magnon-photon coupling induced in the photonic crystals with an YGaGeIG defect
    Zhang, Chi
    Shi, Yongzhang
    Zhang, Weihua
    Jiang, Changjun
    Chai, Guozhi
    [J]. APPLIED PHYSICS LETTERS, 2019, 115 (02)