Developing data-driven models for quantifying Cochlodinium polykrikoides using the Geostationary Ocean Color Imager (GOCI)

被引:8
|
作者
Kwon, Yong Sung [1 ]
Jang, Eunna [1 ]
Im, Jungho [1 ]
Baek, Seung Ho [2 ]
Park, Yongeun [1 ]
Cho, Kyung Hwa [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Urban & Environm Engn, 50 UNIST Gil, Ulsan 44919, South Korea
[2] Korea Inst Ocean Sci & Technol, South Sea Res Inst, Geoje, South Korea
基金
新加坡国家研究基金会;
关键词
HARMFUL ALGAL BLOOMS; RED TIDE DETECTION; WATER-QUALITY; PHYTOPLANKTON BLOOMS; COASTAL; FUSION; PRODUCTS; SENSOR; SEA;
D O I
10.1080/01431161.2017.1381354
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Harmful algal blooms have caused critical problems worldwide because they pose serious threats to human health and aquatic ecosystems. In particular, red tide blooms of Cochlodinium polykrikoides have caused serious damage to aquaculture in Korean coastal waters. In this study, multiple linear regression, regression tree (RT), and Random Forest models were applied to detect C. polykrikoides blooms in coastal waters. Five types of input data sets were implemented to test the performance of the models. The observed number of C. polykrikoides cells and reflectance data from Geostationary Ocean Color Imager images obtained in a 3-year period (2013-2015) were used to train and validate the models. The RT model demonstrated the best prediction performance when four bands and three-band ratio data were simultaneously used as input data. The results obtained via iterative model development with randomly chosen input data indicate that the recognition of patterns in the training data caused variations in the prediction performance. This work provides useful tools for reliable estimation of the number of C. polykrikoides cells using reasonable coastal water reflectance data sets. It is expected that administrators and decision-makers whose work is associated with coastal waters will be able to easily access and manipulate the RT model.
引用
收藏
页码:68 / 83
页数:16
相关论文
共 50 条
  • [1] Remote quantification of Cochlodinium polykrikoides blooms occurring in the East Sea using geostationary ocean color imager (GOCI)
    Noh, Jae Hoon
    Kim, Wonkook
    Son, Seung Hyun
    Ahn, Jae-Hyun
    Park, Young-Je
    HARMFUL ALGAE, 2018, 73 : 129 - 137
  • [2] Development of Geostationary Ocean Color Imager (GOCI)
    Cho, Seongick
    Ahn, Yu-Hwan
    Ryu, Joo-Hyung
    Kang, Gm-Sil
    Youn, Heong-Sik
    KOREAN JOURNAL OF REMOTE SENSING, 2010, 26 (02) : 157 - 165
  • [3] Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS)
    Joo-Hyung Ryu
    Hee-Jeong Han
    Seongick Cho
    Young-Je Park
    Yu-Hwan Ahn
    Ocean Science Journal, 2012, 47 (3) : 223 - 233
  • [4] Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI)
    Wang, Menghua
    Ahn, Jae-Hyun
    Jiang, Lide
    Shi, Wei
    Son, SeungHyun
    Park, Young-Je
    Ryu, Joo-Hyung
    OPTICS EXPRESS, 2013, 21 (03): : 3835 - 3849
  • [5] Characterization of ocean color retrievals and ocean diurnal variations using the Geostationary Ocean Color Imager (GOCI)
    Wang, Menghua
    Shi, Wei
    Jiang, Lide
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 122
  • [6] Development the Geostationary Ocean Color Imager (GOCI) Data Processing System (GDPS)
    Han, Hee-Jeong
    Ryu, Joo-Hyung
    Ahn, Yu-Hwan
    KOREAN JOURNAL OF REMOTE SENSING, 2010, 26 (02) : 239 - 249
  • [7] Derivation of Red Tide Index and Density Using Geostationary Ocean Color Imager (GOCI) Data
    Lee, Min-Sun
    Park, Kyung-Ae
    Micheli, Fiorenza
    REMOTE SENSING, 2021, 13 (02) : 1 - 18
  • [8] Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI)
    Moon, Jeong-Eon
    Ahn, Yu-Hwan
    Ryu, Joo-Hyung
    Shanmugam, Palanisamy
    KOREAN JOURNAL OF REMOTE SENSING, 2010, 26 (02) : 189 - 207
  • [9] Prelaunch Study of Validation for the Geostationary Ocean Color Imager (GOCI)
    Ryu, Joo-Hyung
    Moon, Jeong-Eon
    Son, Young Baek
    Cho, Seongick
    Min, Jee-Eun
    Yang, Chan-Su
    Ahn, Yu-Hwan
    Shim, Jae-Seol
    KOREAN JOURNAL OF REMOTE SENSING, 2010, 26 (02) : 251 - 262
  • [10] Estimates of diurnal and daily net primary productivity using the Geostationary Ocean Color Imager (GOCI) data
    Wu, Jinghui
    Goes, Joaquim I.
    Gomes, Helga do Rosario
    Lee, Zhongping
    Noh, Jae-Hoon
    Wei, Jianwei
    Shang, Zhehai
    Salisbury, Joseph
    Mannino, Antonio
    Kim, Wonkook
    Park, Young-Je
    Ondrusek, Michael
    Lance, Veronica P.
    Wang, Menghua
    Frouin, Robert
    REMOTE SENSING OF ENVIRONMENT, 2022, 280