A global Budyko model to partition evaporation into interception and transpiration

被引:24
|
作者
Mianabadi, Ameneh [1 ,2 ]
Coenders-Gerrits, Miriam [2 ]
Shirazi, Pooya [1 ]
Ghahraman, Bijan [1 ]
Alizadeh, Amin [1 ]
机构
[1] Ferdowsi Univ Mashhad, Water Engn Dept, Fac Agr, Mashhad, Razavi Khorasan, Iran
[2] Delft Univ Technol, Fac Civil Engn & Geosci, Water Resources Sect, Delft, Netherlands
关键词
MEAN ANNUAL EVAPOTRANSPIRATION; ZONE STORAGE CAPACITY; RAINFALL INTERCEPTION; WATER-BALANCE; FLOOR INTERCEPTION; LAND EVAPORATION; SOIL; CLIMATE; SATELLITE; FOREST;
D O I
10.5194/hess-23-4983-2019
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Evaporation is a crucial flux in the hydrological cycle and links the water and energy balance of a catchment. The Budyko framework is often used to provide a first-order estimate of evaporation, as it is a straightforward model with only rainfall and potential evaporation as required input. Many researchers have improved the Budyko framework by including more physics and catchment characteristics in the original equation. However, the parameterization of these improved Budyko models is not so straightforward, is data demanding, and requires local knowledge that is difficult to obtain at the global scale. In this paper we present an improvement of the previously presented Gerrits' model ("Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model" in Gerrits et al., 2009 WRR), whereby total evaporation is calculated on the basis of simple interception and transpiration thresholds in combination with measurable parameters like rainfall dynamics and storage availability from remotely sensed data sources. While Gerrits' model was previously investigated for 10 catchments with different climate conditions and where some parameters were assumed to be constant, in this study we applied the model at the global scale and fed the model with remotely sensed input data. The output of the model has been compared to two complex land-surface models, S STEAM and GLEAM, as well as the database of Landflux-EVAL. Our results show that total evaporation estimated by Gerrits' model is in good agreement with Landflux-EVAL, STEAM, and GLEAM. The results also show that Gerrits' model underestimates interception in comparison to STEAM and overestimates it in comparison to GLEAM, whereas the opposite is found for transpiration. Errors in interception can partly be explained by differences in the definition of interception that successively introduce errors in the calculation of transpiration. Relating to the Budyko framework, the model shows a reasonable performance for the estimation of total evaporation. The results also found a unimodal distribution of the transpiration to precipitation fraction (E-t/P), indicating that both increasing and decreasing aridity will result in a decline in the fraction of transpired rainfall by plants for growth and metabolism.
引用
收藏
页码:4983 / 5000
页数:18
相关论文
共 50 条
  • [1] Methods to separate observed global evapotranspiration into the interception, transpiration and soil surface evaporation components
    Blyth, Eleanor
    Harding, Richard John
    HYDROLOGICAL PROCESSES, 2011, 25 (26) : 4063 - 4068
  • [2] Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model
    Sutanto, S. J.
    Wenninger, J.
    Coenders-Gerrits, A. M. J.
    Uhlenbrook, S.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2012, 16 (08) : 2605 - 2616
  • [3] Simplified Interception/Evaporation Model
    Baiamonte, Giorgio
    HYDROLOGY, 2021, 8 (03)
  • [4] Comparison of interception, forest floor evaporation and transpiration in Pinus radiata and Eucalyptus globulus plantations
    Benyon, R. G.
    Doody, T. M.
    HYDROLOGICAL PROCESSES, 2015, 29 (06) : 1173 - 1187
  • [5] Partitioning of evaporation into transpiration, soil evaporation and interception: A comparison between isotope measurements and a HYDRUS-1D model (vol 16, pg 2605, 2012)
    Sutanto, S. J.
    Wenninger, J.
    Coenders-Gerrits, A. M. J.
    Uhlenbrook, S.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2012, 16 (09) : 3261 - 3261
  • [6] EVAPORATION AND TRANSPIRATION
    EKERN, PC
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1971, 52 (06): : I286 - &
  • [7] EVAPORATION AND TRANSPIRATION
    ZIEMER, RR
    REVIEWS OF GEOPHYSICS, 1979, 17 (06) : 1175 - 1186
  • [8] GLOBAL VEGETATION CHANGE PREDICTED BY THE MODIFIED BUDYKO MODEL
    MONSERUD, RA
    TCHEBAKOVA, NM
    LEEMANS, R
    CLIMATIC CHANGE, 1993, 25 (01) : 59 - 83
  • [9] Using the Budyko Framework for Calibrating a Global Hydrological Model
    Greve, P.
    Burek, P.
    Wada, Y.
    WATER RESOURCES RESEARCH, 2020, 56 (06)
  • [10] A simple and objective method to partition evapotranspiration into transpiration and evaporation at eddy-covariance sites
    Li, Xi
    Gentine, Pierre
    Lin, Changjie
    Zhou, Sha
    Sun, Zan
    Zheng, Yi
    Liu, Jie
    Zheng, Chunmiao
    AGRICULTURAL AND FOREST METEOROLOGY, 2019, 265 : 171 - 182