Forecasting the geomagnetic activity of the Dst index using multiscale radial basis function networks

被引:41
|
作者
Wei, H. L. [1 ]
Zhu, D. Q. [1 ]
Billings, S. A. [1 ]
Balikhin, M. A. [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Dst index; NARX model; nonlinear system identification; prediction; radial basis function (RBF)networks;
D O I
10.1016/j.asr.2007.02.080
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Dst index is a key parameter which characterises the disturbance of the geomagnetic field in magnetic storms. Modelling of the Dst index is thus very important for the analysis of the geomagnetic field. A data-based modelling approach, aimed at obtaining efficient models from limited input-output observational data, provides a powerful tool for analysing and forecasting geomagnetic activities including the prediction of the Dst index. In this study, the process of the Dst index is treated to be a structure-unknown system, where the solar wind parameter (VBs) and the solar wind dynamic pressure (P) are the system inputs, and the Dst index is the system output. A novel multiscale RBF (MSRBF) network is introduced to represent such a two-input and single-output system, where the Dst index is related to the solar wind parameter and the dynamic pressure, via a hybrid network model consisting of two submodels: a linear part that reflects the linear relationship between the output and the inputs, and a nonlinear part that captures the effect of the interacting contribution of past observations of the inputs and the output, on the current output. The proposed MSRBF network can easily be converted into a linear-in-the-parameters form and the training of the linear network model can easily be implemented using a forward orthogonal regression (FOR) algorithm. One advantage of the new MSRBF network, compared with traditional single scale RBF networks, is that the new network is more flexible for describing complex nonlinear dynamical systems. (c) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1863 / 1870
页数:8
相关论文
共 50 条
  • [1] Forecasting Geomagnetic activity (Dst Index) using the ensemble kalman filter
    Nilam, B.
    Ram, S. Tulasi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 511 (01) : 723 - 731
  • [2] Comparison of efficiency of artificial neural networks for forecasting the geomagnetic activity index dst
    Barkhatov N.A.
    Bellustin N.S.
    Levitin A.E.
    Sakharov S.Y.
    Radiophysics and Quantum Electronics, 2000, 43 (5) : 347 - 355
  • [3] Generalized multiscale radial basis function networks
    Billings, Stephen A.
    Wei, Hua-Liang
    Balikhin, Michael A.
    NEURAL NETWORKS, 2007, 20 (10) : 1081 - 1094
  • [4] Flood forecasting using radial basis function neural networks
    Chang, FJ
    Liang, JM
    Chen, YC
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2001, 31 (04): : 530 - 535
  • [5] Predicting Geomagnetic Activity: The Dst Index
    McPherron, Robert L.
    O'Brien, Paul
    SPACE WEATHER, 2001, 125 : 339 - 345
  • [6] Stock index modeling using Hierarchical Radial Basis Function Networks
    Chen, Yuehui
    Peng, Lizhi
    Abraham, Ajith
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 3, PROCEEDINGS, 2006, 4253 : 398 - 405
  • [7] Probabilistic Wind Power Forecasting Using Radial Basis Function Neural Networks
    Sideratos, George
    Hatziargyriou, Nikos D.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (04) : 1788 - 1796
  • [8] Short-term load forecasting using radial basis function networks
    Gontar, Z
    Sideratos, G
    Hatziargyriou, N
    METHODS AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3025 : 432 - 438
  • [9] Power load forecasting using extended normalised radial basis function networks
    Kodogiannis, V. S.
    Amina, M.
    Lygouras, J. N.
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2011, 11 (04) : 243 - 255
  • [10] Application of radial basis function networks for wind power forecasting
    Sideratos, George
    Hatziargyriou, N. D.
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 2, 2006, 4132 : 726 - 735