P systems with active membranes: trading time for space

被引:12
|
作者
Porreca, Antonio E. [1 ]
Leporati, Alberto [1 ]
Mauri, Giancarlo [1 ]
Zandron, Claudio [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Informat Sistemist & Comunicaz, I-20126 Milan, Italy
关键词
Membrane computing; Computational complexity; Register machines; COMPLEXITY; POWER;
D O I
10.1007/s11047-010-9189-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider recognizer P systems having three polarizations associated to the membranes, and we show that they are able to solve the PSPACE-complete problem Quantified 3SAT when working in polynomial space and exponential time. The solution is uniform (all the instances of a fixed size are solved by the same P system) and uses only communication rules: evolution rules, as well as membrane division and dissolution rules, are not used. Our result shows that, as it happens with Turing machines, this model of P systems can solve in exponential time and polynomial space problems that cannot be solved in polynomial time, unless P = SPACE.
引用
收藏
页码:167 / 182
页数:16
相关论文
共 50 条
  • [1] P systems with active membranes: trading time for space
    Antonio E. Porreca
    Alberto Leporati
    Giancarlo Mauri
    Claudio Zandron
    Natural Computing, 2011, 10 : 167 - 182
  • [2] Trading polarizations for labels in P systems with active membranes
    Artiom Alhazov
    Linqiang Pan
    Gheorghe Păun
    Acta Informatica, 2004, 41 : 111 - 144
  • [3] Trading polarizations for labels in P systems with active membranes
    Alhazov, A
    Pan, LQ
    Paun, G
    ACTA INFORMATICA, 2004, 41 (2-3) : 111 - 144
  • [4] Bounding the space in P systems with active membranes
    Claudio Zandron
    Journal of Membrane Computing, 2020, 2 : 137 - 145
  • [5] Bounding the space in P systems with active membranes
    Zandron, Claudio
    JOURNAL OF MEMBRANE COMPUTING, 2020, 2 (02) : 137 - 145
  • [6] P Systems with Active Membranes Working in Sublinear Space
    Zandron, Claudio
    Leporati, Alberto
    Manzoni, Luca
    Mauri, Giancarlo
    Porreca, Antonio E.
    MEMBRANE COMPUTING (CMC 2014), 2014, 8961 : 35 - 47
  • [7] P SYSTEMS WITH ACTIVE MEMBRANES WORKING IN POLYNOMIAL SPACE
    Porreca, Antonio E.
    Leporati, Alberto
    Mauri, Giancarlo
    Zandron, Claudio
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2011, 22 (01) : 65 - 73
  • [8] A survey on space complexity of P systems with active membranes
    Alberto Leporati
    Luca Manzoni
    Giancarlo Mauri
    Antonio E. Porreca
    Claudio Zandron
    International Journal of Advances in Engineering Sciences and Applied Mathematics, 2018, 10 (3) : 221 - 229
  • [9] Constant-Space P Systems with Active Membranes
    Leporati, Alberto
    Manzoni, Luca
    Mauri, Giancarlo
    Porreca, Antonio E.
    Zandron, Claudio
    FUNDAMENTA INFORMATICAE, 2014, 134 (1-2) : 111 - 128
  • [10] Alternative space definitions for P systems with active membranes
    Artiom Alhazov
    Alberto Leporati
    Luca Manzoni
    Giancarlo Mauri
    Claudio Zandron
    Journal of Membrane Computing, 2021, 3 : 87 - 96