Pure motives with representable Chow groups

被引:11
|
作者
Vial, Charles [1 ]
机构
[1] Univ Cambridge, DPMMS, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
SURJECTIVITY; CYCLES;
D O I
10.1016/j.crma.2010.10.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an algebraically closed field We show using Kahn s and Sujatha s theory of birational motives that a Chow motive over k whose Chow groups are all representable (in the sense of Definition 2 1) belongs to the full and thick subcategory of motives generated by the twisted motives of curves (C) 2010 Academie des sciences Published by Elsevier Masson SAS All rights reserved
引用
收藏
页码:1191 / 1195
页数:5
相关论文
共 50 条
  • [1] Motives and filtrations on Chow groups
    Saito, S
    INVENTIONES MATHEMATICAE, 1996, 125 (01) : 149 - 196
  • [2] Motives and filtrations on Chow groups, II
    Saito, S
    ARITHMETIC AND GEOMETRY OF ALGEBRAIC CYCLES, 2000, 548 : 321 - 346
  • [3] Chow groups and L-derivatives of automorphic motives for unitary groups
    Li, Chao
    Liu, Yifeng
    ANNALS OF MATHEMATICS, 2021, 194 (03) : 817 - 901
  • [4] Chow groups and L-derivatives of automorphic motives for unitary groups, II
    Li, Chao
    Liu, Yifeng
    FORUM OF MATHEMATICS PI, 2022, 10
  • [5] Chow motives versus noncommutative motives
    Tabuada, Goncalo
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2013, 7 (03) : 767 - 786
  • [6] On Chow motives of surfaces
    Gille, Stefan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 686 : 149 - 166
  • [7] Chow motives without projectivity
    Wildeshaus, Joerg
    COMPOSITIO MATHEMATICA, 2009, 145 (05) : 1196 - 1226
  • [8] Motives and chow groups of quadrics with application to the u-invariant (after Oleg!Izhboldin)
    Karpenko, NA
    GEOMETRIC METHODS IN THE ALGEBRAIC THEORY OF QUADRATIC FORMS, 2004, 1835 : 103 - 129
  • [9] CHOW MOTIVES OF GENUS ONE FIBRATIONS
    Kawabe, Daiki
    arXiv, 2022,
  • [10] Higher Tate traces of Chow motives
    De Clercq, Charles
    Queguiner-Mathieu, Anne
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (815): : 1 - 22