Homoclinic accretion solutions in the Schwarzschild-anti-de Sitter space-time

被引:15
|
作者
Mach, Patryk [1 ]
机构
[1] Uniwersytet Jagiellonski, Inst Fizyki Mariana Smoluchowskiego, PL-30348 Krakow, Poland
来源
PHYSICAL REVIEW D | 2015年 / 91卷 / 08期
关键词
BLACK-HOLE;
D O I
10.1103/PhysRevD.91.084016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The aim of this paper is to clarify the distinction between homoclinic and standard (global) Bondi-type accretion solutions in the Schwarzschild-anti-de Sitter space-time. The homoclinic solutions have recently been discovered numerically for polytropic equations of state. Here I show that they exist also for certain isothermal (linear) equations of state, and an analytic solution of this type is obtained. It is argued that the existence of such solutions is generic, although for sufficiently relativistic matter models (photon gas, ultrahard equation of state) there exist global solutions that can be continued to infinity, similarly to standard Michel's solutions in the Schwarzschild space-time. In contrast to that global solutions should not exist for matter models with a nonvanishing rest-mass component, and this is demonstrated for polytropes. For homoclinic isothermal solutions I derive an upper bound on the mass of the black hole for which stationary transonic accretion is allowed.
引用
收藏
页数:7
相关论文
共 50 条