Maximum Margin Clustering without Nonconvex Optimization: an Equivalent Transformation

被引:0
|
作者
Kang, Y. [1 ,2 ]
Liu, Z. Y. [1 ,3 ]
Wang, W. P. [1 ]
Meng, D. [1 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing 100864, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Beijing Inst Technol, Sch Software, Beijing, Peoples R China
关键词
Maximum margin clustering; Spectral clustering; Kernel machine;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
On account of the promising performance in accuracy, maximum margin clustering (MMC) has attracted attentions from many research domains. MMC derived from the extension of support vector machine (SVM). But due to the undetermined labeling of samples in dataset, the original optimization is a nonconvex problem which is time-consuming to solve. Based on another high-quality nonlinear clustering techniquespectral clustering, this paper discusses an equivalent transformation of MMC into spectral clustering. By virtue of the establishment of equivalent relation between MMC and spectral clustering, we search for a simplified spectral clustering based method to solve the optimization problem of MMC efficiently, reducing its computational complexity. Experimental results on real world datasets show that the clustering results of MMC from the equivalent transformed spectral clustering method are better than any other baseline algorithms in comparison, and the reduced time consuming makes this advanced MMC more scalable.
引用
收藏
页码:1425 / 1428
页数:4
相关论文
共 50 条
  • [1] Incremental maximum margin clustering
    Saradhi, V. Vijaya
    Abraham, P. Charly
    PATTERN ANALYSIS AND APPLICATIONS, 2016, 19 (04) : 1057 - 1067
  • [2] Incremental maximum margin clustering
    V. Vijaya Saradhi
    P. Charly Abraham
    Pattern Analysis and Applications, 2016, 19 : 1057 - 1067
  • [3] Extreme Maximum Margin Clustering
    Zhang, Chen
    Xia, ShiXiong
    Liu, Bing
    Zhang, Lei
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (08): : 1745 - 1753
  • [4] MAXIMUM MARGIN CLUSTERING OF HYPERSPECTRAL DATA
    Niazmardi, S.
    Safari, A.
    Homayouni, S.
    SMPR CONFERENCE 2013, 2013, 40-1-W3 : 305 - 308
  • [5] Maximum Margin Clustering Made Practical
    Zhang, Kai
    Tsang, Ivor W.
    Kwok, James T.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (04): : 583 - 596
  • [6] Linear Time Maximum Margin Clustering
    Wang, Fei
    Zhao, Bin
    Zhang, Changshui
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (02): : 319 - 332
  • [7] Maximum Margin Clustering on Data Manifolds
    Wang, Fei
    Wang, Xin
    Li, Tao
    2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 1028 - 1033
  • [8] SPARSE KERNEL MAXIMUM MARGIN CLUSTERING
    Wu, Ji
    Zhang, Xiao-Lei
    NEURAL NETWORK WORLD, 2011, 21 (06) : 551 - 573
  • [9] Maximum Margin Clustering with Pairwise Constraints
    Hu, Yang
    Wang, Jingdong
    Yu, Nenghai
    Hua, Xian-Sheng
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 253 - +
  • [10] Maximum Margin Dirichlet Process Mixtures for Clustering
    Chen, Gang
    Zhang, Haiying
    Xiong, Caiming
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1491 - 1497