RETRACTED: Vehicle Detection for Vision-Based Intelligent Transportation Systems Using Convolutional Neural Network Algorithm (Retracted Article)

被引:10
|
作者
Khalifa, Othman O. [1 ,2 ]
Wajdi, Muhammad H. [2 ]
Saeed, Rashid A. [3 ]
Hashim, Aisha H. A. [2 ]
Ahmed, Muhammed Z. [4 ]
Ali, Elmustafa Sayed [5 ,6 ]
机构
[1] Libyan Ctr Engn Res & Informat Technol, Bani Waleed, Libya
[2] Int Islamic Univ Malaysia, Dept Elect & Comp Engn, Kuala Lumpur, Malaysia
[3] Taif Univ, Coll Comp & Informat Technol, Dept Comp Engn, POB 11099, At Taif 21944, Saudi Arabia
[4] Univ Maiduguri, Dept Comp Engn, Maiduguri, Nigeria
[5] Red Sea Univ, Fac Engn, Dept Elect & Elect Engn, Port Sudan, Sudan
[6] Sudan Univ Sci & Technol, Fac Engn, Dept Elect Engn, Khartoum, Sudan
关键词
D O I
10.1155/2022/9189600
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Vehicle detection in Intelligent Transportation Systems (ITS) is a key factor ensuring road safety, as it is necessary for the monitoring of vehicle flow, illegal vehicle type detection, incident detection, and vehicle speed estimation. Despite the growing popularity in research, it remains a challenging problem that must be solved. Hardware-based solutions such as radars and LIDAR are been proposed but are too expensive to be maintained and produce little valuable information to human operators at traffic monitoring systems. Software based solutions using traditional algorithms such as Histogram of Gradients (HOG) and Gaussian Mixed Model (GMM) are computationally slow and not suitable for real-time traffic detection. Therefore, the paper will review and evaluate different vehicle detection methods. In addition, a method of utilizing Convolutional Neural Network (CNN) is used for the detection of vehicles from roadway camera outputs to apply video processing techniques and extract the desired information. Specifically, the paper utilized the YOLOv5s architecture coupled with k-means algorithm to perform anchor box optimization under different illumination levels. Results from the simulated and evaluated algorithm showed that the proposed model was able to achieve a mAP of 97.8 in the daytime dataset and 95.1 in the nighttime dataset.
引用
收藏
页数:11
相关论文
共 50 条