Damage detection in a laboratory wind turbine blade using techniques of ultrasonic NDT and SHM

被引:27
|
作者
Yang, Kai [1 ]
Rongong, Jem A. [2 ]
Worden, Keith [2 ]
机构
[1] TWI Ltd, Cambridge, England
[2] Univ Sheffield, Dynam Res Grp, Dept Mech Engn, Mappin St, Sheffield S1 3JD, S Yorkshire, England
来源
STRAIN | 2018年 / 54卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
guided wave-based SHM; non-linear acoustics; structural health monitoring (SHM); wind turbine blades; LAMB WAVES; COMPOSITE;
D O I
10.1111/str.12290
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper presents a case study in the use of ultrasonic NDE/SHM techniques for detecting and locating damage in a real (but small) wind turbine blade. Two techniques are considered: (1) non-linear acoustics, and (2) guided-wave "pitch-catch" SHM. While the non-linear acoustics approach proved disappointingly insensitive to damage induced experimentally in the blade, the guided-wave approach not only detected the damage but also proved capable of locating it, using a "network of novelty detectors" methodology. A first, slightly ill-conceived, programme of guided-wave tests actually provided valuable insight into attenuation of waves in the structure of interest and supported the idea that actuator-sensor networks of a feasible density could be used for wind turbine blade SHM.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Wind turbine blade damage detection using data-driven techniques
    Velasco D.
    Guzmán L.
    Puruncajas B.
    Tutivén C.
    Vidal Y.
    [J]. Renewable Energy and Power Quality Journal, 2023, 21 : 462 - 466
  • [2] NDT of wind turbine blades using adapted ultrasonic and radiographic techniques
    Jasiuniene, E.
    Raisutis, R.
    Sliteris, R.
    Voleisis, A.
    Vladisauskas, A.
    Mitchard, D.
    Amos, M.
    [J]. INSIGHT, 2009, 51 (09) : 477 - 483
  • [3] Damage detection on a wind turbine blade section
    Sundaresan, MJ
    Schulz, MJ
    Hill, J
    Wheater, EA
    Ferguson, F
    Pai, PF
    [J]. IMAC - PROCEEDINGS OF THE 17TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS I AND II, 1999, 3727 : 1359 - 1365
  • [4] Wind turbine blade damage detection using an active sensing approach
    Ruan, Jiabiao
    Ho, Siu Chun Michael
    Patil, Devendra
    Li, Mo
    Song, Gangbing
    [J]. SMART MATERIALS AND STRUCTURES, 2014, 23 (10)
  • [5] WIND TURBINE BLADE DAMAGE DETECTION USING VARIOUS MACHINE LEARNING ALGORITHMS
    Regan, Taylor
    Canturk, Rukiye
    Slavkovsky, Elizabeth
    Niezrecki, Christopher
    Inalpolat, Murat
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2016, VOL 8, 2016,
  • [6] Wind Turbine Blade Damage Detection Using Supervised Machine Learning Algorithms
    Regan, Taylor
    Beale, Christopher
    Inalpolat, Murat
    [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2017, 139 (06):
  • [7] Damage detection of wind turbine blade based on wavelet analysis
    Zhao, Qian
    Li, Wei
    Shao, Yichuan
    Yao, Xingjia
    Tian, Haonan
    Zhang, Jing
    [J]. 2015 8th International Congress on Image and Signal Processing (CISP), 2015, : 1406 - 1410
  • [8] An unsupervised damage detection method for an operating wind turbine blade
    Ashkarkalaei, Mohadeseh
    Ghiasi, Ramin
    Pakrashi, Vikram
    Malekjafarian, Abdollah
    [J]. e-Journal of Nondestructive Testing, 2024, 29 (07):
  • [9] A Case Study on Damage Detection of Wind turbine Composite Blade
    Kumar, H. S. Sunil
    Anand, R. B.
    [J]. FME TRANSACTIONS, 2019, 47 (01): : 135 - 141
  • [10] Research and Development of Wind Turbine Blade Damage Detection Technology
    Wang D.
    Xiao J.
    Liu Y.
    Du W.
    Zhu R.
    Li F.
    [J]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2023, 43 (12): : 4614 - 4630