Frobenius pseudoprimes

被引:0
|
作者
Grantham, J [1 ]
机构
[1] Inst Def Anal, Ctr Comp Sci, Bowie, MD 20715 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The proliferation of probable prime tests in recent years has produced a plethora of definitions with the word "pseudoprime" in them. Examples include pseudoprimes, Euler pseudoprimes, strong pseudoprimes, Lucas pseudoprimes, strong Lucas pseudoprimes, extra strong Lucas pseudoprimes and Perrin pseudoprimes. Though these tests represent a wealth of ideas, they exist as a hodge-podge of definitions rather than as examples of a more general theory. It is the goal of this paper to present a way of viewing many of these tests as special cases of a general principle, as well as to re-formulate them in the context of finite fields. One aim of the reformulation is to enable the creation of stronger tests; another is to aid in proving results about large classes of pseudoprimes.
引用
收藏
页码:873 / 891
页数:19
相关论文
共 50 条
  • [1] FROBENIUS, LUCAS, AND DICKSON PSEUDOPRIMES
    Somer, Lawrence
    Krizek, Michal
    [J]. FIBONACCI QUARTERLY, 2022, 60 (04): : 325 - 343
  • [2] Frobenius pseudoprimes and a cubic primality test
    Buell, Catherine A.
    Kimball, Eric W.
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2014, 20 (04) : 11 - 20
  • [3] Quadratic Frobenius pseudoprimes with respect to x2
    Nagashima, Saki
    Shinohara, Naoyuki
    Uchiyama, Shigenori
    [J]. JSIAM LETTERS, 2019, 11 : 53 - 55
  • [4] AVERAGE LIAR COUNT FOR DEGREE-2 FROBENIUS PSEUDOPRIMES
    Fiori, Andrew
    Shallue, Andrew
    [J]. MATHEMATICS OF COMPUTATION, 2020, 89 (321) : 493 - 514
  • [5] Cipolla Pseudoprimes
    Hamahata, Y.
    Kokubun, Y.
    [J]. JOURNAL OF INTEGER SEQUENCES, 2007, 10 (08)
  • [6] ON EVEN PSEUDOPRIMES
    ROTKIEWICZ, A
    ZIEMAK, K
    [J]. FIBONACCI QUARTERLY, 1995, 33 (02): : 123 - 125
  • [7] THE PSEUDOPRIMES TO 25.109
    POMERANCE, C
    SELFRIDGE, JL
    WAGSTAFF, SS
    [J]. MATHEMATICS OF COMPUTATION, 1980, 35 (151) : 1003 - 1026
  • [8] Finding pseudoprimes
    Jameson, G. J. O.
    [J]. MATHEMATICAL GAZETTE, 2011, 95 (534): : 420 - 432
  • [9] ELLIPTIC PSEUDOPRIMES
    MIYAMOTO, I
    MURTY, MR
    [J]. MATHEMATICS OF COMPUTATION, 1989, 53 (187) : 415 - 430
  • [10] LUCAS PSEUDOPRIMES
    BAILLIE, R
    WAGSTAFF, SS
    [J]. MATHEMATICS OF COMPUTATION, 1980, 35 (152) : 1391 - 1417