Computational Cell Cycle Analysis of Single Cell RNA-Seq Data

被引:0
|
作者
Moussa, Marmar [1 ]
Mandoiu, Ion I. [2 ]
机构
[1] Univ Connecticut, Sch Med, Farmington, CT 06030 USA
[2] Univ Connecticut, Storrs, CT USA
基金
美国国家科学基金会;
关键词
scRNA-Seq; Cell cycle; Cell order; Gene smoothness score; REVEALS; GENES;
D O I
10.1007/978-3-030-79290-9_7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The variation in gene expression profiles of cells captured in different phases of the cell cycle can interfere with cell type identification and functional analysis of single cell RNA-Seq (scRNA-Seq) data. In this paper, we introduce SC1CC (SC1 Cell Cycle analysis tool), a computational approach for clustering and ordering single cell transcriptional profiles according to their progression along cell cycle phases. We also introduce a new robust metric, Gene Smoothness Score (GSS) for assessing the cell cycle based order of the cells. SC1CC is available as part of the SC1 web-based scRNA-Seq analysis pipeline, publicly accessible at https://sc1.engr.uconn.edu/.
引用
收藏
页码:71 / 87
页数:17
相关论文
共 50 条
  • [1] Computational cell cycle analysis of single cell RNA-seq data
    Moussa, Marmar
    [J]. 2018 IEEE 8TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2018,
  • [2] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    [J]. MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243
  • [3] Single-Cell RNA-Seq Technologies and Related Computational Data Analysis
    Chen, Geng
    Ning, Baitang
    Shi, Tieliu
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [4] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    McDavid, Andrew
    Finak, Greg
    Gottardo, Raphael
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (06) : 591 - 593
  • [5] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    Andrew McDavid
    Greg Finak
    Raphael Gottardo
    [J]. Nature Biotechnology, 2016, 34 : 591 - 593
  • [6] CCPE: cell cycle pseudotime estimation for single cell RNA-seq data
    Liu, Jiajia
    Yang, Mengyuan
    Zhao, Weiling
    Zhou, Xiaobo
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (02) : 704 - 716
  • [7] scBubbletree: computational approach for visualization of single cell RNA-seq data
    Kitanovski, Simo
    Cao, Yingying
    Ttoouli, Dimitris
    Farahpour, Farnoush
    Wang, Jun
    Hoffmann, Daniel
    [J]. BMC BIOINFORMATICS, 2024, 25 (01):
  • [8] Characterizing and inferring quantitative cell cycle phase in single-cell RNA-seq data analysis
    Hsiao, Chiaowen Joyce
    Tung, PoYuan
    Blischak, John D.
    Burnett, Jonathan E.
    Barr, Kenneth A.
    Dey, Kushal K.
    Stephens, Matthew
    Gilad, Yoav
    [J]. GENOME RESEARCH, 2020, 30 (04) : 611 - 621
  • [9] Reply to The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    Andrew McDavid
    Greg Finak
    Raphael Gottardo
    [J]. Nature Biotechnology, 2016, 34 : 593 - 595
  • [10] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data Reply
    不详
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (06) : 593 - 595