PCA plus HMM plus SVM for EEG pattern classification

被引:0
|
作者
Lee, HK
Choi, SJ
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electroencephalogram (EEG) pattern classification plays an important role in the domain of brain computer interface (BCI). Hidden Markov model (HMM) might be a useful tool in EEG pattern classification since EEG data is a multivariate time series data which contains noise and artifacts. In this paper we present methods for EEG pattern classification which jointly employ principal component analysis (PCA) and HMM. Along this line, two methods are introduced: (1) PCA+HMM; (2) PCA+HMM+SVM. Usefulness of principal component features and our hybrid method is confirmed through the classification of EEG that is recorded during the imagination of a left or right hand movement.
引用
收藏
页码:541 / 544
页数:4
相关论文
共 50 条
  • [1] Classification of direction perception EEG based on PCA-SVM
    Jin, Jing
    Wang, Xingyu
    Wang, Bei
    [J]. ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGS, 2007, : 116 - +
  • [2] A Fast and Automatic Kernel-based Classification Scheme: GDA plus SVM or KNWFE plus SVM
    Li, Cheng-Hsuan
    Hsien, Pei-Jyun
    Lin, Li-Hui
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2018, 34 (01) : 103 - 121
  • [3] A comparison of PCA, ICA and LDA in EEG signal classification using SVM
    Guersoy, M. Ismail
    Subasi, Abduelhamit
    [J]. 2008 IEEE 16TH SIGNAL PROCESSING, COMMUNICATION AND APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2008, : 853 - 856
  • [4] Minimum Class Variance SVM plus for data classification
    Zhu, Wenxin
    Zhong, Ping
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2017, 11 (01) : 79 - 96
  • [5] A comparative analysis between SVM and PCA plus Logistic Regression for the construction of a discriminative glucose metabolic brain pattern in ALS
    Devrome, M.
    Ceccarini, J.
    Van Weehaeghe, D.
    Van Damme, P.
    Van Laere, K.
    Koole, M.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 : S26 - S26
  • [6] A New SVM plus NDA Model for Improved Classification and Recognition
    Khan, Naimul Mefraz
    Ksantini, Riadh
    Ahmad, Imran Shafiq
    Boufama, Boubaker
    [J]. IMAGE ANALYSIS AND RECOGNITION, PT I, PROCEEDINGS, 2010, 6111 : 127 - 136
  • [7] EEG-based Emotion Classification Using Innovative Features and Combined SVM and HMM Classifier
    Guo, Kairui
    Candra, Henry
    Yu, Hairong
    Li, Huiqi
    Nguyen, Hung T.
    Su, Steven W.
    [J]. 2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 489 - 492
  • [8] Identification of Lettuce Storage Time based on Spectral Preprocessing Technology and PCA plus SVM
    Sun Jun
    Jin Xiaming
    Mao Hanping
    Wu Xiaohong
    [J]. JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2013, 7 : 747 - 752
  • [9] Classification of Mental Tasks from EEG Signals Using Spectral Analysis, PCA and SVM
    Neshov, Nikolay N.
    Manolova, Agata H.
    Draganov, Ivo R.
    Tonschev, Krasimir T.
    Boumbarov, Ognian L.
    [J]. CYBERNETICS AND INFORMATION TECHNOLOGIES, 2018, 18 (01) : 81 - 92
  • [10] Speaker Verification Based on TES-PCA Classifier and SVM plus FCM Clustering
    Xing Yujuan
    Tan Ping
    Zhang Chengwen
    [J]. BIOMETRIC RECOGNITION, CCBR 2015, 2015, 9428 : 464 - 471