Optimization of Reaction Selectivity Using CFD-Based Compartmental Modeling and Surrogate-Based Optimization

被引:19
|
作者
Yang, Shu [1 ]
Kiang, San [1 ]
Farzan, Parham [1 ]
Ierapetritou, Marianthi [1 ]
机构
[1] Rutgers State Univ, Dept Chem & Biochem Engn, 98 Brett Rd, Piscataway, NJ 08854 USA
来源
PROCESSES | 2019年 / 7卷 / 01期
关键词
mixing; CFD-simulation; surrogate-based optimization; compartmental modeling; competing reaction system; optimization; model order reduction; COMPUTATIONAL FLUID-DYNAMICS; HYBRID MULTIZONAL/CFD MODELS; GLOBAL OPTIMIZATION; MULTIOBJECTIVE OPTIMIZATION; CONSTRAINED OPTIMIZATION; GENERAL METHODOLOGY; MIXING PERFORMANCE; REACTORS; GAS; HYDRODYNAMICS;
D O I
10.3390/pr7010009
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Mixing is considered as a critical process parameter (CPP) during process development due to its significant influence on reaction selectivity and process safety. Nevertheless, mixing issues are difficult to identify and solve owing to their complexity and dependence on knowledge of kinetics and hydrodynamics. In this paper, we proposed an optimization methodology using Computational Fluid Dynamics (CFD) based compartmental modelling to improve mixing and reaction selectivity. More importantly, we have demonstrated that through the implementation of surrogate-based optimization, the proposed methodology can be used as a computationally non-intensive way for rapid process development of reaction unit operations. For illustration purpose, reaction selectivity of a process with Bourne competitive reaction network is discussed. Results demonstrate that we can improve reaction selectivity by dynamically controlling rates and locations of feeding in the reactor. The proposed methodology incorporates mechanistic understanding of the reaction kinetics together with an efficient optimization algorithm to determine the optimal process operation and thus can serve as a tool for quality-by-design (QbD) during product development stage.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Surrogate-based analysis and optimization
    Queipo, NV
    Haftka, RT
    Shyy, W
    Goel, T
    Vaidyanathan, R
    Tucker, PK
    PROGRESS IN AEROSPACE SCIENCES, 2005, 41 (01) : 1 - 28
  • [2] Selection of surrogate modeling techniques for surface approximation and surrogate-based optimization
    Williams, Bianca
    Cremaschi, Selen
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2021, 170 : 76 - 89
  • [3] Fast Optimization of Microwave Filters using Surrogate-Based Optimization Methods
    Chemmangat, Krishnan
    Deschrijver, Dirk
    Couckuyt, Ivo
    Dhaene, Tom
    Knockaert, Luc
    2012 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2012, : 212 - 215
  • [4] Surrogate-based optimization based on the probability of feasibility
    Martin Sohst
    Frederico Afonso
    Afzal Suleman
    Structural and Multidisciplinary Optimization, 2022, 65
  • [5] Surrogate-based optimization based on the probability of feasibility
    Sohst, Martin
    Afonso, Frederico
    Suleman, Afzal
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (01)
  • [6] Surrogate-Based Superstructure Optimization Framework
    Henao, Carlos A.
    Maravelias, Christos T.
    AICHE JOURNAL, 2011, 57 (05) : 1216 - 1232
  • [7] Recent advances in surrogate-based optimization
    Forrester, Alexander I. J.
    Keane, Andy J.
    PROGRESS IN AEROSPACE SCIENCES, 2009, 45 (1-3) : 50 - 79
  • [8] Satellite Constellation Reconfiguration Using Surrogate-Based Optimization
    Zuo, Xiaoyu
    Bai, Xue
    Xu, Ming
    Li, Ming
    Zhou, Jing
    Yu, Linghui
    Zhang, Jingrui
    JOURNAL OF AEROSPACE ENGINEERING, 2022, 35 (04)
  • [9] Small Antenna Design Using Surrogate-Based Optimization
    Koziel, Slawomir
    Bekasiewicz, Adrian
    2014 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2014, : 585 - 586
  • [10] Surrogate-Based Optimization of SMT Inductors
    Riener, Christian
    Reinbacher-Koestinger, Alice
    Bauernfeind, Thomas
    Kvasnicka, Samuel
    Roppert, Klaus
    Kaltenbacher, Manfred
    2024 IEEE 21ST BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, CEFC 2024, 2024,