Sumsets associated with Wythoff sequences and Fibonacci numbers

被引:9
|
作者
Kawsumarng, Sutasinee [1 ]
Khemaratchatakumthorn, Tammatada [1 ]
Noppakaew, Passawan [1 ]
Pongsriiam, Prapanpong [1 ]
机构
[1] Silpakorn Univ, Fac Sci, Dept Math, Amphoe Muang 73000, Nakhon Pathom, Thailand
关键词
Wythoff sequence; Sumset; Fibonacci number; Golden ratio; Beatty sequence; LUCAS-NUMBERS; DIVISOR FUNCTION; APPEARANCE; ORDER; PRODUCTS; POWERS; GAMES;
D O I
10.1007/s10998-020-00343-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let alpha=(1+5)/2alpha = (1+\sqrt{5})/2$$\end{document} be the golden ratio, and let B(alpha)=(n alpha)n >= 1 = (\left\lfloor n\alpha \right\rfloor )_{n\ge 1}$$\end{document} and B(alpha 2)=n alpha 2n >= 1 = \left( \left\lfloor n\alpha <^>2\right\rfloor \right) _{n\ge 1}$$\end{document} be the lower and upper Wythoff sequences, respectively. In this article, we obtain a new estimate concerning the fractional part {n alpha} and study the sumsets associated with Wythoff sequences. For example, we show that every n >= 4 can be written as a sum of two terms in B(alpha) and a positive integer n can be written as the sum a alpha+b alpha 2 for some a,b is an element of N\} if and only if n is not one less than a Fibonacci number. The structure of the set B(alpha 2)+B(alpha 2) contains some kinds of fractal and palindromic patterns and is more complicated than the other sets, but we can also give a complete description of this set.
引用
收藏
页码:98 / 113
页数:16
相关论文
共 50 条
  • [1] Sumsets associated with Wythoff sequences and Fibonacci numbers
    Sutasinee Kawsumarng
    Tammatada Khemaratchatakumthorn
    Passawan Noppakaew
    Prapanpong Pongsriiam
    Periodica Mathematica Hungarica, 2021, 82 : 98 - 113
  • [2] Sumsets of Wythoff sequences, Fibonacci representation, and beyond
    Jeffrey Shallit
    Periodica Mathematica Hungarica, 2022, 84 : 37 - 46
  • [3] Sumsets of Wythoff sequences, Fibonacci representation, and beyond
    Shallit, Jeffrey
    PERIODICA MATHEMATICA HUNGARICA, 2022, 84 (01) : 37 - 46
  • [4] GENERALIZED WYTHOFF NUMBERS FROM SIMULTANEOUS FIBONACCI REPRESENTATIONS
    BICKNELLJOHNSON, M
    FIBONACCI QUARTERLY, 1985, 23 (04): : 308 - 318
  • [5] Sumsets associated with Beatty sequences
    Phunphayap, Phakhinkon Napp
    Pongsriiam, Prapanpong
    Shallit, Jeffrey
    DISCRETE MATHEMATICS, 2022, 345 (05)
  • [6] Ascent Sequences and Fibonacci Numbers
    Mansour, Toufik
    Shattuck, Mark
    FILOMAT, 2015, 29 (04) : 703 - 712
  • [7] AITKEN SEQUENCES AND FIBONACCI NUMBERS
    PHILLIPS, GM
    AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (06): : 354 - 357
  • [8] FAREY SEQUENCES OF FIBONACCI NUMBERS
    ALLADI, K
    FIBONACCI QUARTERLY, 1975, 13 (01): : 1 - 10
  • [9] Fibonacci numbers and cotangent sequences
    Jamieson, MJ
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (07): : 655 - 657
  • [10] FIBONACCI PROPERTY OF WYTHOFF PAIRS
    SILBER, R
    FIBONACCI QUARTERLY, 1976, 14 (04): : 380 - 384