Interaction between cadmium and atrazine during uptake by rice seedlings (Oryza sativa L.)

被引:35
|
作者
Su, YH
Zhu, YG [1 ]
Lin, AJ
Zhang, XH
机构
[1] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, Beijing 100085, Peoples R China
[2] Xinjiang Univ, Dept Chem, Urumqi 830046, Peoples R China
关键词
atrazine; cadmium; rice seedlings; uptake; bioconcentration factor;
D O I
10.1016/j.chemosphere.2005.04.022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The uptake of atrazine by rice seedlings (Oryza sativa L.) through plant roots from nutrient solution was investigated in the presence and absence of Cd2+ over an exposure period of four weeks. It was found that both atrazine and Cd2+ were toxic to rice seedlings. Both shoot and root biomasses decreased when the seedlings were exposed to increasing atrazine or Cd2+ concentrations in nutrient solutions. In the absence of Cd2+, a linear relationship was observed between atrazine concentrations in roots/shoots and in external solution, and more atrazine is concentrated in roots than in shoots. When atrazine and Cd2+ concentrations in solution were maintained at mole ratio of 1:1, the accumulation of atrazine by seedlings was less and the seedling biomass was greater than found with other ratios, such as 1:2 or 2:1. Therefore, the formation of the complex between atrazine and Cd2+ reduced the individual toxicities. Analyses of data with the quasi-equilibrium partition model indicated that the atrazine concentrations in rice seedlings and external water were close to equilibrium. In the presence of Cd2+, however, the measured bioconcentration factor (BCF) of atrazine with roots and shoots were considerably greater. The latter findings resulted presumably from the atrazine-Cd2+ complex formation that led to a large apparent BCF. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:802 / 809
页数:8
相关论文
共 50 条
  • [1] Influence of lead on atrazine uptake by rice (Oryza sativa L.) seedlings from nutrient solution
    Su, YH
    Zhu, YG
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2005, 12 (01) : 21 - 27
  • [2] Inhibition mechanisms of urea combined with nitrification on cadmium uptake by rice (Oryza sativa L.) seedlings
    Li, Li
    Liu, Yuling
    Zhang, Shijing
    Ding, Siduo
    Fu, Xin
    Zeng, Qingru
    Peng, Liang
    Luo, Si
    PLANT AND SOIL, 2023, 485 (1-2) : 425 - 438
  • [3] Inhibition mechanisms of urea combined with nitrification on cadmium uptake by rice (Oryza sativa L.) seedlings
    Li Li
    Yuling Liu
    Shijing Zhang
    Siduo Ding
    Xin Fu
    Qingru Zeng
    Liang Peng
    Si Luo
    Plant and Soil, 2023, 485 : 425 - 438
  • [4] The Influence of pH on Cadmium Accumulation in Seedlings of Rice (Oryza sativa L.)
    Umed Ali
    Min Zhong
    Tahmina Shar
    Sajid Fiaz
    Lihong Xie
    Guiai Jiao
    Shakeel Ahmad
    Zhonghua Sheng
    Shaoqing Tang
    Xiangjin Wei
    Peisong Hu
    Journal of Plant Growth Regulation, 2020, 39 : 930 - 940
  • [5] The Influence of pH on Cadmium Accumulation in Seedlings of Rice (Oryza sativa L.)
    Ali, Umed
    Zhong, Min
    Shar, Tahmina
    Fiaz, Sajid
    Xie, Lihong
    Jiao, Guiai
    Ahmad, Shakeel
    Sheng, Zhonghua
    Tang, Shaoqing
    Wei, Xiangjin
    Hu, Peisong
    JOURNAL OF PLANT GROWTH REGULATION, 2020, 39 (02) : 930 - 940
  • [6] Influence of Lead on Atrazine Uptake by Rice (Oryza sativa L.) Seedlings from Nutrient Solution (7 pp)
    Yu-Hong Su
    Yong-Guan Zhu
    Environmental Science and Pollution Research, 2005, 12 : 21 - 27
  • [7] Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings
    Cai, Fei
    Ren, Jinghua
    Tao, Shu
    Wang, Xilong
    ENVIRONMENTAL POLLUTION, 2016, 209 : 169 - 176
  • [8] Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings
    Hsu, YT
    Kao, CH
    PLANT CELL AND ENVIRONMENT, 2003, 26 (06): : 867 - 874
  • [9] Uptake, translocation and biotransformation of selenium nanoparticles in rice seedlings (Oryza sativa L.)
    Kang Wang
    Yaqi Wang
    Kui Li
    Yanan Wan
    Qi Wang
    Zhong Zhuang
    Yanbin Guo
    Huafen Li
    Journal of Nanobiotechnology, 18
  • [10] Effect of selenium on uptake and translocation of arsenic in rice seedlings (Oryza sativa L.)
    Younoussa, Aboubacar
    Wan, Yanan
    Yu, Yao
    Wang, Qi
    Li, Huafen
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2018, 148 : 869 - 875