Effect of Autolyzed Yarrowia lipolytica on the Growth Performance, Antioxidant Capacity, Intestinal Histology, Microbiota, and Transcriptome Profile of Juvenile Largemouth Bass (Micropterus salmoides)

被引:11
|
作者
Fei, Hui [1 ,2 ]
Cheng, Yan [1 ]
Zhang, Huimin [1 ]
Yu, Xiang [3 ]
Yi, Shunfa [1 ]
Huang, Mengmeng [1 ]
Yang, Shun [1 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Life Sci & Med, Hangzhou 310018, Peoples R China
[2] Zhejiang Sci Tech Univ, Zhejiang Prov Key Lab Silkworm Bioreactor & Biome, Hangzhou 310018, Peoples R China
[3] Zhejiang Dev & Planning Inst, Hangzhou 310012, Peoples R China
基金
中国国家自然科学基金;
关键词
Micropterus salmoides; Yarrowia lipolytica; transcriptome; intestinal microbiota; antioxidant capacity; ATLANTIC SALMON; FISH-MEAL; CLASS-I; ENZYME-ACTIVITIES; BODY-COMPOSITION; PROTEIN; YEAST; EXPRESSION; IDENTIFICATION; GENES;
D O I
10.3390/ijms231810780
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The improper components of formulated feed can cause the intestinal dysbiosis of juvenile largemouth bass and further affect fish health. A 28 day feeding trial was conducted to investigate the effect of partially replacing fish meal (FM) with autolyzed Yarrowia lipolytica (YL) on juvenile largemouth bass (Micropterus salmoides). We considered four diets-control, YL25, YL50, and YL75-in which 0%, 25%, 50%, and 75% of the FM content, respectively, was replaced with YL. According to results, the weight gain rate (WGR) and specific growth rate (SGR) of the fish with the YL25 and YL50 diets were significantly higher than the WGR and SGR with the control diet, while the YL75 diet significantly reduced fish growth and antioxidant enzymes activities, and shortened the villus height in the intestinal mucosa. The 16S rRNA analysis of the intestinal microbiota showed that the relative abundance of Mycoplasma was significantly increased with the YL25 and YL50 diets, while the Enterobacteriacea content was increased with the YL75 diet. Moreover, our transcriptome analysis revealed that certain differentially expressed genes (DEGs) that are associated with growth, metabolism, and immunity were modulated by YL inclusion treatment. Dietary YL25 and YL50 significantly reduced the mRNA level of ERBB receptor feedback inhibitor 1 (errfi1) and dual-specificity phosphatases (dusp), while the expression of the suppressor of cytokine signaling 1 (socs1), the transporter associated with antigen processing 2 subunit type a (tap2a), and the major histocompatibility complex class I-related gene (MHC-I-l) were sharply increased with YL75 treatment. We determined that the optimum dose of dietary YL required for maximum growth without any adverse influence on intestinal health was 189.82 g/kg (with 31.63% of the fishmeal replaced by YL), while an excessive substitution of YL for fishmeal led to suppressed growth and antioxidant capacity, as well as intestinal damage for juvenile largemouth bass.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Effect of Starvation on the Serum Physiology, Transcriptome and Intestinal Microbiota of Juvenile Largemouth Bass (Micropterus salmoides)
    Wang, Huan
    Zhou, Huaxing
    Jiang, He
    Hu, Yuting
    Li, Tong
    Duan, Guoqing
    AQUACULTURE RESEARCH, 2024, 2024
  • [2] Toxicology of aspartame to largemouth bass ( Micropterus salmoides) on the basis of antioxidant capacity, liver histology and the intestinal microbiota
    Su, Qiuwen
    Yang, Jiafa
    Yang, Zixin
    Kong, Qin
    Xiao, Guohong
    Liu, Dan
    Tang, Huijuan
    ANIMAL FEED SCIENCE AND TECHNOLOGY, 2025, 320
  • [3] Effect of Dietary Copper on Growth Performance, Antioxidant Capacity, and Immunity in Juvenile Largemouth Bass (Micropterus salmoides)
    Kayiira, John Cosmas
    Mi, Haifeng
    Liang, Hualiang
    Ren, Mingchun
    Huang, Dongyu
    Zhang, Lu
    Teng, Tao
    FISHES, 2024, 9 (09)
  • [4] Dietary valine affects growth performance, intestinal immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides)
    Zhao, Fangyue
    Xu, Pao
    Xu, Gangchun
    Huang, Dongyu
    Zhang, Lu
    Ren, Mingchun
    Liang, Hualiang
    ANIMAL FEED SCIENCE AND TECHNOLOGY, 2023, 295
  • [5] An Evaluation of Laminarin Additive in the Diets of Juvenile Largemouth Bass (Micropterus salmoides): Growth, Antioxidant Capacity, Immune Response and Intestinal Microbiota
    Wu, Youjun
    Cheng, Yan
    Qian, Shichao
    Zhang, Wei
    Huang, Mengmeng
    Yang, Shun
    Fei, Hui
    ANIMALS, 2023, 13 (03):
  • [6] Effects of antimicrobial peptides on the growth performance, antioxidant and intestinal function in juvenile largemouth bass, Micropterus salmoides
    Li, Shuai
    Chi, ShuYan
    Cheng, Xiangtang
    Wu, Chenglong
    Xu, Qiaoqing
    Qu, Peng
    Gao, Weihua
    Liu, Yongsheng
    AQUACULTURE REPORTS, 2020, 16
  • [7] Effect of starch sources on growth, hepatic glucose metabolism and antioxidant capacity in juvenile largemouth bass, Micropterus salmoides
    Song, Ming-Qi
    Shi, Chao-Ming
    Lin, Shi-Mei
    Chen, Yong-Jun
    Shen, Huang-Mian
    Luo, Li
    AQUACULTURE, 2018, 490 : 355 - 361
  • [8] Dietary methionine hydroxy analogue supplementation benefits on growth, intestinal antioxidant status and microbiota in juvenile largemouth bass Micropterus salmoides
    Zhao, Ye
    Yang, Chao
    Zhu, Xiao-Xiao
    Feng, Lin
    Liu, Yang
    Jiang, Wei-Dan
    Wu, Pei
    Huang, Xiao-Li
    Chen, De-Fang
    Yang, Shi-Yong
    Luo, Wei
    Zhang, Jin-Xiu
    Li, Shu-Wei
    Diao, Hui
    Wei, Xiao-Lan
    Zhou, Meng-Jia
    Zhou, Xiao-Qiu
    Jiang, Jun
    AQUACULTURE, 2022, 556
  • [9] Effects of Dietary Cobalt Levels on Growth Performance, Antioxidant Capacity, and Immune Status of Juvenile Largemouth Bass (Micropterus salmoides)
    Huang, Dongyu
    Jahazi, Joshua Daniel
    Ren, Mingchun
    Zhang, Lu
    Liang, Hualiang
    VETERINARY SCIENCES, 2024, 11 (11)
  • [10] Effects of fish meal replaced by fermented soybean meal on growth performance, intestinal histology and microbiota of largemouth bass (Micropterus salmoides)
    He, Ming
    Li, Xiaoqin
    Poolsawat, Lumpan
    Guo, Zihao
    Yao, Wenxiang
    Zhang, Chunyan
    Leng, Xiangjun
    AQUACULTURE NUTRITION, 2020, 26 (04) : 1058 - 1071