In-situ determination of bridging stresses in Al2O3/Al2O3-platelet composites by fluorescence spectroscopy

被引:15
|
作者
Pezzotti, G [1 ]
Okuda, H
Muraki, N
Nishida, T
机构
[1] Kyoto Inst Technol, Dept Mat, Sakyo Ku, Kyoto 6068585, Japan
[2] Toray Res Ctr Ltd, Mat Sci Lab, Shiga 520, Japan
关键词
Al2O3; platelets; composites; bridging stresses; spectroscopy;
D O I
10.1016/S0955-2219(98)00230-1
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bridging stresses arising from interlocking and frictional effects in the crack wake have been quantitatively evaluated in an Al2O3/Al2O3-platelet ceramic, using in-situ microprobe fluorescence spectroscopy. Crack opening displacement (COD) profile has also been quantitatively measured in the scanning electron microscope (SEM), in order to substantiate the reliability of the piezo-spectroscopic measurements of microscopic bridging stresses. Mapping the crack wake (at critical condition for crack propagation) with a laser probe of 2 mu m spatial resolution led to determine a discrete map of closure stresses over a crack extension of about 800 mu m. Relatively high bridging stress values approximate to 350 MPa were revealed due to platelet interlocking in a near-tip bridging zone less than 100 mu m, whereas frictional sites of lower stress magnitude less than 100 MPa were monitored in the crack profile farther away from the crack tip. The availability of microscopic fracture parameters like as the bridging stress distribution and the near-tip COD profile enables to quantitatively explain the rising R-curve behavior of the Al2O3/Al2O3-platelet material. Bridging stress distribution, COD profile and R-curve data are discussed in comparison with those collected in previous studies on equiaxed Al2O3 and roughened Si3N4 The present study supports the notion that crack bridging is by far the most important toughening mechanism in non-transforming ceramics. (C) 1999 Elsevier Science Limited. All rights reserved.
引用
收藏
页码:601 / 608
页数:8
相关论文
共 50 条
  • [1] Microstructure of in-situ Al2O3/Al composites
    Ji, Y
    Zhong, TX
    Wang, Y
    Tang, JH
    Xu, XD
    [J]. JOURNAL OF TRACE AND MICROPROBE TECHNIQUES, 1997, 15 (04): : 489 - 492
  • [2] Determination of bridging stresses in reinforced Al2O3
    Fett, Theo
    Munz, Dietrich
    Yu, Chang-Te
    Kobayashi, Albert S.
    [J]. 1600, American Ceramic Soc, Westerville, OH, United States (77):
  • [3] DETERMINATION OF BRIDGING STRESSES IN REINFORCED AL2O3
    FETT, T
    MUNZ, D
    YU, CT
    KOBAYASHI, AS
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1994, 77 (12) : 3267 - 3269
  • [4] In-Situ Fabrication of TCP/Al2O3 and Fluorapatite/Al2O3 Composites by Normal Sintering of Hydroxyapatite and Al2O3 Powder Mixtures
    Ha, Jung-Soo
    Han, Yoo-Jeong
    [J]. KOREAN JOURNAL OF MATERIALS RESEARCH, 2019, 29 (02): : 129 - 135
  • [5] BIMODAL SINTERING OF AL2O3/AL2O3 PLATELET CERAMIC COMPOSITES
    BELMONTE, M
    MOYA, JS
    MIRANZO, P
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1995, 78 (06) : 1661 - 1667
  • [6] Bimodal sintering of Al2O3/Al2O3 platelet ceramic composites
    Instituto de Ceramica y Vidrio, Madrid, Spain
    [J]. J Am Ceram Soc, 6 (1661-1667):
  • [7] Flash sintering of 3YSZ/Al2O3-platelet composites
    Jia, Yongjie
    Su, Xinghua
    Wu, Yajuan
    Wang, Zhenjun
    Meng, Leichao
    Xu, Xiqing
    Zhang, Anni
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2020, 103 (04) : 2351 - 2361
  • [8] Sintering behaviour and microstructures of Ti(Al,O)/Al2O3, Ti3Al(O)/Al2O3 and TiAl(O)/Al2O3 in situ composites
    Cai, ZH
    Zhang, DL
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 419 (1-2): : 310 - 317
  • [9] Mechanism of Synthesizing Al2O3/Fe-Al Composites with nano Al2O3 Fibers by In-Situ Process
    Lu Chen-jing
    Ren Shu-xia
    Wang Jian-lei
    Yu Gang
    [J]. MICRO-NANO TECHNOLOGY XIV, PTS 1-4, 2013, 562-565 : 837 - 841
  • [10] Improved tensile properties of Al2O3/Al composite with in-situ generated Al2O3
    Shi, Wenchao
    Cui, Beishun
    Tang, Min
    Gong, Dongmei
    Xu, Feng
    [J]. MATERIALS TESTING, 2024, 66 (03) : 359 - 363