Full-waveform inversion imaging of the human brain

被引:122
|
作者
Guasch, Lluis [1 ]
Calderon Agudo, Oscar [1 ]
Tang, Meng-Xing [2 ]
Nachev, Parashkev [3 ]
Warner, Michael [1 ]
机构
[1] Imperial Coll London, Dept Earth Sci & Engn, London SW7 2AZ, England
[2] Imperial Coll London, Dept Bioengn, London SW7 2AZ, England
[3] UCL, Inst Neurol, 33 Queen Sq, London WC1N 3BG, England
基金
英国惠康基金;
关键词
EMPIRICAL ULTRASONIC PROPERTIES; FREQUENCY-DOMAIN; ATTENUATION; RESOLUTION; COMPILATION; TOMOGRAPHY; SCATTERING; LIMITS;
D O I
10.1038/s41746-020-0240-8
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Magnetic resonance imaging and X-ray computed tomography provide the two principal methods available for imaging the brain at high spatial resolution, but these methods are not easily portable and cannot be applied safely to all patients. Ultrasound imaging is portable and universally safe, but existing modalities cannot image usefully inside the adult human skull. We use in silico simulations to demonstrate that full-waveform inversion, a computational technique originally developed in geophysics, is able to generate accurate three-dimensional images of the brain with sub-millimetre resolution. This approach overcomes the familiar problems of conventional ultrasound neuroimaging by using the following: transcranial ultrasound that is not obscured by strong reflections from the skull, low frequencies that are readily transmitted with good signal-to-noise ratio, an accurate wave equation that properly accounts for the physics of wave propagation, and adaptive waveform inversion that is able to create an accurate model of the skull that then compensates properly for wavefront distortion. Laboratory ultrasound data, using ex vivo human skulls and in vivo transcranial signals, demonstrate that our computational experiments mimic the penetration and signal-to-noise ratios expected in clinical applications. This form of non-invasive neuroimaging has the potential for the rapid diagnosis of stroke and head trauma, and for the provision of routine monitoring of a wide range of neurological conditions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Full-waveform inversion imaging of the human brain
    Lluís Guasch
    Oscar Calderón Agudo
    Meng-Xing Tang
    Parashkev Nachev
    Michael Warner
    npj Digital Medicine, 3
  • [2] Ultrasound Imaging of the Brain using Full-Waveform Inversion
    Taskin, Ulas
    Eikrem, Kjersti Solberg
    Naevdal, Geir
    Jakobsen, Morten
    Verschuur, Dirk J.
    van Dongen, Koen W. A.
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2020,
  • [3] Evolutionary full-waveform inversion
    van Herwaarden, Dirk Philip
    Afanasiev, Michael
    Thrastarson, Solvi
    Fichtner, Andreas
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 224 (01) : 306 - 311
  • [4] Variational full-waveform inversion
    Zhang, Xin
    Curtis, Andrew
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 222 (01) : 406 - 411
  • [5] Interferometric full-waveform inversion
    Sinha, Mrinal
    Schuster, Gerard T.
    GEOPHYSICS, 2019, 84 (01) : R45 - R60
  • [6] Variational full-waveform inversion
    Zhang X.
    Curtis A.
    Geophysical Journal International, 2021, 222 (01): : 406 - 411
  • [7] Compound Regularization of Full-Waveform Inversion for Imaging Piecewise Media
    Aghamiry, Hossein S.
    Gholami, Ali
    Operto, Strphane
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (02): : 1192 - 1204
  • [8] ADMM-based full-waveform inversion for microseismic imaging
    Aghamiry, H. S.
    Gholami, A.
    Operto, S.
    Malcolm, A.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2022, 228 (01) : 259 - 274
  • [9] Semiglobal viscoacoustic full-waveform inversion
    da Silva, Nuno V.
    Yao, Gang
    Warner, Michael
    GEOPHYSICS, 2019, 84 (02) : R271 - R293
  • [10] Prismatic and full-waveform joint inversion
    Qu Ying-Ming
    Li Zhen-Chun
    Huang Jian-Ping
    Li Jin-Li
    APPLIED GEOPHYSICS, 2016, 13 (03) : 511 - 518