Minimal Pathway for the Regeneration of Redox Cofactors

被引:19
|
作者
Partipilo, Michele [1 ]
Ewins, Eleanor J. [1 ]
Frallicciardi, Jacopo [1 ]
Robinson, Tom [2 ]
Poolman, Bert [1 ]
Slotboom, Dirk Jan [1 ]
机构
[1] Univ Groningen, Groningen Inst Biomol Sci & Biotechnol, Dept Biochem, NL-9747 AG Groningen, Netherlands
[2] Max Planck Inst Colloids & Interfaces, Dept Theory & Biosyst, D-14476 Potsdam, Germany
来源
JACS AU | 2021年 / 1卷 / 12期
基金
欧洲研究理事会;
关键词
Redox cofactors; metabolic pathways; synthetic biology; liposome confinement; formic acid; GLUTATHIONE-REDUCTASE; MALATE-DEHYDROGENASE; ESCHERICHIA-COLI; LIPID VESICLES; CELL; TRANSHYDROGENASE; EXPRESSION; FIXATION; STATE;
D O I
10.1021/jacsau.1c00406
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Effective metabolic pathways are essential for the construction of in vitro systems mimicking the biochemical complexity of living cells. Such pathways require the inclusion of a metabolic branch that ensures the availability of reducing equivalents. Here, we built a minimal enzymatic pathway confinable in the lumen of liposomes, in which the redox status of the nicotinamide cofactors NADH and NADPH is controlled by an externally provided formate. Formic acid permeates the membrane where a luminal formate dehydrogenase uses NAD(+) to form NADH and carbon dioxide. Carbon dioxide diffuses out of the liposomes, leaving only the reducing equivalents in the lumen. A soluble transhydrogenase subsequently utilizes NADH for reduction of NADP(+) thereby making NAD(+) available again for the first reaction. The pathway is functional in liposomes ranging from a few hundred nanometers in diameter (large unilamellar vesicles) up to several tens of micrometers (giant unilamellar vesicles) and remains active over a period of 7 days. We demonstrate that the downstream biochemical process of reduction of glutathione disulfide can be driven by the transfer of reducing equivalents from formate via NAD(P)H, thereby providing a versatile set of electron donors for reductive metabolism.
引用
收藏
页码:2280 / 2293
页数:14
相关论文
共 50 条
  • [1] A minimal pathway for the regeneration of redox cofactors
    Partipilo, Michele
    Ewins, Eleanor Jane
    Frallicciardi, Jacopo
    Robinson, Tom
    Poolman, Bert
    Slotboom, Dirk Jan
    BIOPHYSICAL REVIEWS, 2021, 13 (06) : 1426 - 1427
  • [2] ELECTROCHEMICAL REGENERATION OF REDOX COFACTORS AND MEDIATORS - THE KEY TO BIOELECTROSYNTHESIS
    ALLEN, PM
    BOWEN, WR
    TRENDS IN BIOTECHNOLOGY, 1985, 3 (06) : 145 - 149
  • [3] A common export pathway for proteins binding complex redox cofactors?
    Berks, BC
    MOLECULAR MICROBIOLOGY, 1996, 22 (03) : 393 - 404
  • [4] Organic redox cofactors
    Rotello, VM
    Swenson, RP
    ANTIOXIDANTS & REDOX SIGNALING, 2001, 3 (05) : 721 - 722
  • [5] Ribozymes that use redox cofactors
    Tsukiji, S
    Ramaswamy, K
    Suga, H
    PURE AND APPLIED CHEMISTRY, 2004, 76 (7-8) : 1525 - 1536
  • [6] Regeneration of cofactors for use in biocatallysis
    Zhao, HM
    van der Donk, WA
    CURRENT OPINION IN BIOTECHNOLOGY, 2003, 14 (06) : 583 - 589
  • [7] ELECTROCHEMICAL REGENERATION OF ENZYMATIC COFACTORS
    CAMPANELLA, L
    FERRI, T
    SAMMARTINO, MP
    MARCONI, W
    NIDOLA, A
    JOURNAL OF MOLECULAR CATALYSIS, 1987, 43 (02): : 153 - 159
  • [8] DIRECT ELECTROCHEMICAL REGENERATION OF ENZYMATIC COFACTORS
    CAMPANELLA, L
    DENORA, O
    FERRI, T
    MARCONI, W
    NIDOLA, A
    SAMMARTINO, MP
    CHIMICA & L INDUSTRIA, 1987, 69 (04): : 69 - 75
  • [9] The plasticity of redox cofactors: from metalloenzymes to redox-active DNA
    Anja Hemschemeier
    Thomas Happe
    Nature Reviews Chemistry, 2018, 2 : 231 - 243
  • [10] The plasticity of redox cofactors: from metalloenzymes to redox-active DNA
    Hemschemeier, Anja
    Happe, Thomas
    NATURE REVIEWS CHEMISTRY, 2018, 2 (09): : 231 - 243