Automatic Liver Segmentation in CT Volumes with Improved 3D U-net

被引:2
|
作者
Liu, Chunlei [1 ]
Cui, Deqi [1 ]
Shi, Dejun [1 ]
Hu, Zhiqiang [1 ]
Qin, Yuan [2 ]
Lang, Jinyi [2 ]
机构
[1] LinkingMed, 4th FI,Shuangqing Tower Bldg 2,77 Shuangqing Rd, Beijing, Peoples R China
[2] Sichuan Canc Hosp & Inst, 55,Sect 4,South Renmin Rd, Chengdu, Peoples R China
关键词
Liver Segmentation; 3D U-net; Dilated Convolution; Separable Convolution; Post-Processing;
D O I
10.1145/3285996.3286014
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Automatic liver segmentation is a crucial prerequisite yet challenging task for computer-aided hepatic disease diagnosis and treatment. In this paper, we implemented an improved 3D U-net[1] architecture, which achieves a more precise segmentation effect. The proposed 3D U-net takes advantage of dilated convolution [2] that extracts multi-scale feature information and separable convolution[3] that achieve separation of cross-channel correlation and spatial correlation. In addition to the skip concatenation of the down-sampling feature and the up-sampling feature, we add skip concatenation at intervals of two convolution layers during the down-sampling process. The improved 3D U-net produces high-quality segmentation result of liver in CT scans. We also used a post-processing based on liver feature information in CT to optimize the segmentation.
引用
收藏
页码:78 / 82
页数:5
相关论文
共 50 条
  • [1] Automatic Semicircular Canal Segmentation of CT Volumes Using Improved 3D U-Net with Attention Mechanism
    Wu, Hongcheng
    Liu, Juanxiu
    Chen, Gui
    Liu, Weixing
    Hao, Ruqian
    Liu, Lin
    Ni, Guangming
    Liu, Yong
    Zhang, Xiaowen
    Zhang, Jing
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [2] Automatic Liver Segmentation with CT Images based on 3D U-net Deep Learning Approach
    Su, Ting-Yu
    Yang, Wei-Tse
    Cheng, Tsu-Chi
    He, Yi-Fei
    Fang, Yu-Hua
    [J]. INTERNATIONAL FORUM ON MEDICAL IMAGING IN ASIA 2019, 2019, 11050
  • [3] 3D U-Net Based Automatic Segmentation of Organs at Risk From CT
    Liu, T.
    He, X.
    Zhao, R.
    Wang, A.
    Li, X.
    Shi, F.
    Tian, L.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E628 - E628
  • [4] Automatic multilabel aorta segmentation in PET/CT using a modified 3D U-Net
    Van Praagh, G.
    Nienhuis, P. H.
    Reijrink, M.
    Davidse, M. E. J.
    Spottiswoode, B. S.
    Gao, F.
    Prakken, N. H. J.
    Wolterink, J. M.
    Mouridsen, K.
    Sinha, B.
    Borra, R. J. H.
    Slart, R. H. J.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S285 - S285
  • [5] Deep 3D attention CLSTM U-Net based automated liver segmentation and volumetry for the liver transplantation in abdominal CT volumes
    Jin Gyo Jeong
    Sangtae Choi
    Young Jae Kim
    Won-Suk Lee
    Kwang Gi Kim
    [J]. Scientific Reports, 12
  • [6] Deep 3D attention CLSTM U-Net based automated liver segmentation and volumetry for the liver transplantation in abdominal CT volumes
    Jeong, Jin Gyo
    Choi, Sangtae
    Kim, Young Jae
    Lee, Won-Suk
    Kim, Kwang Gi
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [7] Automatic Segmentation on Liver With 3D U-Net, Pixel Deconvolutional and Dense Transformer Network
    Yao, H.
    Chang, J.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E366 - E366
  • [8] Improved 3D U-Net for COVID-19 Chest CT Image Segmentation
    Zheng, Ruiyong
    Zheng, Yongguo
    Dong-Ye, Changlei
    [J]. SCIENTIFIC PROGRAMMING, 2021, 2021
  • [9] Segmentation of Liver Anatomy by Combining 3D U-Net Approaches
    Affane, Abir
    Kucharski, Adrian
    Chapuis, Paul
    Freydier, Samuel
    Lebre, Marie-Ange
    Vacavant, Antoine
    Fabijanska, Anna
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [10] LIVER VESSELS SEGMENTATION BASED ON 3D RESIDUAL U-NET
    Yu, Wei
    Fang, Bin
    Liu, Yongqing
    Gao, Mingqi
    Zheng, Shenhai
    Wang, Yi
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 250 - 254